Volume 29 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
ZHOU Ruiling, SUN Jinghui, DENG Yanping, HUANG Hongbo, NIU Zelong, WANG Peili. Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins[J]. Chinese Journal of General Practice, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198
Citation: ZHOU Ruiling, SUN Jinghui, DENG Yanping, HUANG Hongbo, NIU Zelong, WANG Peili. Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins[J]. Chinese Journal of General Practice, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198

Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins

doi: 10.16766/j.cnki.issn.1674-4152.004198
Funds:

 82305028

  • Received Date: 2025-01-10
  •   Objective  To analyze the causal relationship between genes underlying the antithrombotic drug target of Panax notoginseng saponins (PNS) and acute myocardial infarction (AMI) using Mendelian randomization (MR) method.  Methods  Genome-wide association study (GWAS) datasets were obtained from the European Bioinformatics Institute, Finnish database and UK Biobank database, all available online at the IEU Open GWAS website. Random-effects inverse variance weighting was the main analytical method, MR-Egger regression tested for horizontal pleiotropy, Cochran' s Q test assessed heterogeneity, and leave-one-out sensitivity analysis assessed stability.  Results  Eighteen core drug targets of PNS were obtained, and the genetic proxies of the 18 targets were screened for thrombus-positive diseases to identify 11 effective antithrombotic targets, which resulted in five potential drug targets for the treatment of AMI, including HIF1A, MDM2, CCND1, TP53 and INS. PNS targets HIF1A, CCND1, TP53, and INS were associated with an increased risk of AMI (all OR>1, P<0.05), and MDM2 was associated with a decreased risk of AMI (OR=0.671, P=0.022).  Conclusion  PNS exhibits potential therapeutic effects for AMI by targeting myocardial apoptosis pathways through antithrombotic genes to modulate disease progression, highlighting its potential as a key target for developing precision therapeutic strategies.

     

  • loading
  • [1]
    RAO S V, O'DONOGHUE M L, RUEL M, et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2025, 151(13): e771-e862.
    [2]
    李雪, 薛素芳, 王淳秀, 等. 急性心脑梗死临床特征及治疗转归的研究[J]. 医学研究杂志, 2024, 53(1): 131-135.

    LI X, XUE SF, WANG CX, et al. Study on Clinical Profile, Treatment and Outcomes of Patients with Acute Cardio-cerebral Infarction[J]. Journal of Medical Research, 2024, 53(1): 131-135.
    [3]
    KRVGER N, KREFTING J, KESSLER T, et al. Ticagrelor vs. Prasugrel for acute coronary syndrome in routine care[J]. JAMA Netw Open, 2024, 7(12): e2448389. DOI: 10.1001/jamanetworkopen.2024.48389.
    [4]
    CHEN P, GAO Z, GUO M, et al. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2024, 15(3): 1353662. DOI: 10.3389/fphar.2024.1353662.
    [5]
    ZHOU R, ZHANG J, ZHANG W, et al. Clinical efficacy and safety of Panax notoginseng saponins in treating chronic obstructive pulmonary disease with blood hypercoagulability: a meta-analysis of randomized controlled trials[J]. Phytomedicine, 2024, 12(3): 155-244.
    [6]
    李岩, 张宇霞, 单海燕. 基于两样本孟德尔随机化分析空腹血糖与冠心病的因果关系[J]. 中华全科医学, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833

    LI Y, ZHANG Y X, SHAN H Y. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833
    [7]
    国家中医心血管病临床医学研究中心, 中国医师协会中西医结合医师分会, 中国中西医结合学会活血化瘀专业委员会, 等. 三七总皂苷制剂临床应用中国专家共识[J]. 中国中西医结合杂志, 2021, 41(10): 1157-1167.

    NATIONAL CRCCMCD, CHINESE PAIM, CHINESE SIM, PROFESSIONAL CABRBS, et al. Chinese Expert Consensus on Clinical Application of Total Saponins of Panax Notognseng[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2021, 41(10): 1157-1167.
    [8]
    孙爱民. 血塞通对急性ST段抬高型心肌梗死患者PCI术后炎症因子及心功能的影响[J]. 慢性病学杂志, 2021, 22(9): 1425-1427.

    SUN A M. Effect of hemosiderophores on inflammatory factors and cardiac function after PCI in patients with acute ST-segment elevation myocardial infarction[J]. Chronic Pathematology Journal, 2021, 22(9): 1425-1427.
    [9]
    王清华. 注射用血栓通联合他汀类药物对急性心肌梗死患者PCI术后血脂及内皮功能的影响[J]. 黑龙江医药科学, 2023, 46(6): 189-190.

    WANG Q H. Effect of injectable thromboxane combined with statins on lipids and endothelial function after PCI in patients with acute myocardial infarction[J]. Heilongjiang Medicine and Pharmacy, 2023, 46(6): 189-190.
    [10]
    ALANOVA P, ALAN L, OPLETALOVA B, et al. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia[J]. Acta Physiol(Oxf), 2024, 240(9): e14202. DOI: 10.1111/apha.14202.
    [11]
    CHEN Y, SHAN S, XUE Q, et al. Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α[J]. Mol Med, 2025, 31(1): 100. DOI: 10.1186/s10020-025-01155-z.
    [12]
    XIA J, CHEN C, SUN Y, et al. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy[J]. Cell Biochem Biophys, 2024, 82(2): 1179-1191. doi: 10.1007/s12013-024-01267-z
    [13]
    LIU X, LU M, ZHONG H, et al. Panax notoginseng saponins protect H9c2 cells from hypoxia-reoxygenation injury through the Forkhead Box O3a hypoxia-inducible factor-1 alpha cell signaling pathway[J]. J Cardiovasc Pharmacol, 2021, 78(5): e681-e689. doi: 10.1097/FJC.0000000000001120
    [14]
    ZHU X, QIU Z, LEI S, et al. The role of P53 in myocardial ischemia-reperfusion injury[J]. Cardiovasc Drugs Ther, 2025, 39(1): 195-209. doi: 10.1007/s10557-023-07480-x
    [15]
    ZHAO L, SUN L, LI X, et al. Potential cardioprotective effect of genipin via cyclooxidase 2 suppression and P53 signal pathway attenuation in induced myocardial infarction in rats[J]. Shock(Augusta, Ga.), 2022, 58(5): 457-463.
    [16]
    ZHU Y, CHEN Y, ZU Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation[J]. J Transl Med, 2024, 22(1): 612. DOI: 10.1186/s12967-024-05415-0.
    [17]
    WANG L, CHEN X, WANG Y, et al. MiR-30c-5p mediates the effects of panax notoginseng saponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage[J]. Biomed Pharmacother, 2020, 125(3): 109963. DOI: 10.1016/j.biopha.2020.109963.
    [18]
    ZHENG Z, LIANG S, SUN S, et al. Clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats[J]. J Healthc Eng, 2022, 2022: 8706730. DOI: 10.1155/2022/8706730.
    [19]
    ZHENG S, LIU T, CHEN M, et al. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats[J]. Front Pharmacol, 2023, 14(1): 1260674. DOI: 10.3389/fphar.2023.1260674.
    [20]
    ABOULEISA R, SALAMA A, OU Q, et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure[J]. Circulation, 2022, 145(17): 1339-1355. doi: 10.1161/CIRCULATIONAHA.121.057641
    [21]
    DU C, ZHAO S, SHAN T, et al. Cellular nucleic acid binding protein facilitates cardiac repair after myocardial infarction by activating β-catenin signaling[J]. J Mol Cell Cardiol, 2024, 189(4): 66-82.
    [22]
    刘镏. Ankrd1蛋白通过上调cyclinD1促进新生小鼠心梗后心肌再生修复的作用机制研究[D]. 南京: 南京医科大学, 2023.

    LIU Z. Mechanism of action of Ankrd1 protein in promoting myocardial regeneration and repair after myocardial infarction in neonatal mice through up-regulation of cyclinD1[D]. Nanjing: Nanjing Medical University, 2023.
    [23]
    HOU L, ZOU Z, WANG Y, et al. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification[J]. Aging, 2024, 16(8): 6745-6756.
    [24]
    FENG L L, LI B W, XI Y, et al. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J]. Am J Physiol Cell Physiol, 2022, 322(2): C164-C176. doi: 10.1152/ajpcell.00344.2021
    [25]
    SHAN Z, ZHANG H, HE C, et al. High-protein mulberry leaves improve glucose and lipid metabolism via activation of the PI3K/Akt/PPARα/CPT-1 pathway[J]. Int J Mol Sci, 2024, 25(16): 8726. DOI: 10.3390/ijms25168726.
    [26]
    CHANG X, FENG X, LI S, et al. Taoren Honghua Decoction alleviates atherosclerosis by inducing autophagy and inhibiting the PI3K-AKT signaling pathway to regulate cholesterol efflux and inflammatory responses[J]. Int Immunopharmacol, 2025, 144(1): 113629. DOI: 10.1016/j.intimp.2024.113629.
    [27]
    CUI F, XIN H. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway[J]. Inflamm Res, 2022, 71(5-6): 669-680. doi: 10.1007/s00011-022-01557-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views (23) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return