| Citation: | ZHOU Ruiling, SUN Jinghui, DENG Yanping, HUANG Hongbo, NIU Zelong, WANG Peili. Exploring potential molecular targeting strategies for the treatment of acute myocardial infarction with genes encoding panax notoginseng saponins[J]. Chinese Journal of General Practice, 2025, 23(10): 1654-1657. doi: 10.16766/j.cnki.issn.1674-4152.004198 |
| [1] |
RAO S V, O'DONOGHUE M L, RUEL M, et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI guideline for the management of patients with acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Circulation, 2025, 151(13): e771-e862.
|
| [2] |
李雪, 薛素芳, 王淳秀, 等. 急性心脑梗死临床特征及治疗转归的研究[J]. 医学研究杂志, 2024, 53(1): 131-135.
LI X, XUE SF, WANG CX, et al. Study on Clinical Profile, Treatment and Outcomes of Patients with Acute Cardio-cerebral Infarction[J]. Journal of Medical Research, 2024, 53(1): 131-135.
|
| [3] |
KRVGER N, KREFTING J, KESSLER T, et al. Ticagrelor vs. Prasugrel for acute coronary syndrome in routine care[J]. JAMA Netw Open, 2024, 7(12): e2448389. DOI: 10.1001/jamanetworkopen.2024.48389.
|
| [4] |
CHEN P, GAO Z, GUO M, et al. Efficacy and safety of Panax notoginseng saponin injection in the treatment of acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials[J]. Front Pharmacol, 2024, 15(3): 1353662. DOI: 10.3389/fphar.2024.1353662.
|
| [5] |
ZHOU R, ZHANG J, ZHANG W, et al. Clinical efficacy and safety of Panax notoginseng saponins in treating chronic obstructive pulmonary disease with blood hypercoagulability: a meta-analysis of randomized controlled trials[J]. Phytomedicine, 2024, 12(3): 155-244.
|
| [6] |
李岩, 张宇霞, 单海燕. 基于两样本孟德尔随机化分析空腹血糖与冠心病的因果关系[J]. 中华全科医学, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833
LI Y, ZHANG Y X, SHAN H Y. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833
|
| [7] |
国家中医心血管病临床医学研究中心, 中国医师协会中西医结合医师分会, 中国中西医结合学会活血化瘀专业委员会, 等. 三七总皂苷制剂临床应用中国专家共识[J]. 中国中西医结合杂志, 2021, 41(10): 1157-1167.
NATIONAL CRCCMCD, CHINESE PAIM, CHINESE SIM, PROFESSIONAL CABRBS, et al. Chinese Expert Consensus on Clinical Application of Total Saponins of Panax Notognseng[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2021, 41(10): 1157-1167.
|
| [8] |
孙爱民. 血塞通对急性ST段抬高型心肌梗死患者PCI术后炎症因子及心功能的影响[J]. 慢性病学杂志, 2021, 22(9): 1425-1427.
SUN A M. Effect of hemosiderophores on inflammatory factors and cardiac function after PCI in patients with acute ST-segment elevation myocardial infarction[J]. Chronic Pathematology Journal, 2021, 22(9): 1425-1427.
|
| [9] |
王清华. 注射用血栓通联合他汀类药物对急性心肌梗死患者PCI术后血脂及内皮功能的影响[J]. 黑龙江医药科学, 2023, 46(6): 189-190.
WANG Q H. Effect of injectable thromboxane combined with statins on lipids and endothelial function after PCI in patients with acute myocardial infarction[J]. Heilongjiang Medicine and Pharmacy, 2023, 46(6): 189-190.
|
| [10] |
ALANOVA P, ALAN L, OPLETALOVA B, et al. HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia[J]. Acta Physiol(Oxf), 2024, 240(9): e14202. DOI: 10.1111/apha.14202.
|
| [11] |
CHEN Y, SHAN S, XUE Q, et al. Sirtuin1 mitigates hypoxia-induced cardiomyocyte apoptosis in myocardial infarction via PHD3/HIF-1α[J]. Mol Med, 2025, 31(1): 100. DOI: 10.1186/s10020-025-01155-z.
|
| [12] |
XIA J, CHEN C, SUN Y, et al. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy[J]. Cell Biochem Biophys, 2024, 82(2): 1179-1191. doi: 10.1007/s12013-024-01267-z
|
| [13] |
LIU X, LU M, ZHONG H, et al. Panax notoginseng saponins protect H9c2 cells from hypoxia-reoxygenation injury through the Forkhead Box O3a hypoxia-inducible factor-1 alpha cell signaling pathway[J]. J Cardiovasc Pharmacol, 2021, 78(5): e681-e689. doi: 10.1097/FJC.0000000000001120
|
| [14] |
ZHU X, QIU Z, LEI S, et al. The role of P53 in myocardial ischemia-reperfusion injury[J]. Cardiovasc Drugs Ther, 2025, 39(1): 195-209. doi: 10.1007/s10557-023-07480-x
|
| [15] |
ZHAO L, SUN L, LI X, et al. Potential cardioprotective effect of genipin via cyclooxidase 2 suppression and P53 signal pathway attenuation in induced myocardial infarction in rats[J]. Shock(Augusta, Ga.), 2022, 58(5): 457-463.
|
| [16] |
ZHU Y, CHEN Y, ZU Y. Leveraging a neutrophil-derived PCD signature to predict and stratify patients with acute myocardial infarction: from AI prediction to biological interpretation[J]. J Transl Med, 2024, 22(1): 612. DOI: 10.1186/s12967-024-05415-0.
|
| [17] |
WANG L, CHEN X, WANG Y, et al. MiR-30c-5p mediates the effects of panax notoginseng saponins in myocardial ischemia reperfusion injury by inhibiting oxidative stress-induced cell damage[J]. Biomed Pharmacother, 2020, 125(3): 109963. DOI: 10.1016/j.biopha.2020.109963.
|
| [18] |
ZHENG Z, LIANG S, SUN S, et al. Clinical observation of salvianolic acid combined with panax notoginseng saponins combined with basic nursing intervention on cerebral ischemia-reperfusion injury in rats[J]. J Healthc Eng, 2022, 2022: 8706730. DOI: 10.1155/2022/8706730.
|
| [19] |
ZHENG S, LIU T, CHEN M, et al. Morroniside induces cardiomyocyte cell cycle activity and promotes cardiac repair after myocardial infarction in adult rats[J]. Front Pharmacol, 2023, 14(1): 1260674. DOI: 10.3389/fphar.2023.1260674.
|
| [20] |
ABOULEISA R, SALAMA A, OU Q, et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure[J]. Circulation, 2022, 145(17): 1339-1355. doi: 10.1161/CIRCULATIONAHA.121.057641
|
| [21] |
DU C, ZHAO S, SHAN T, et al. Cellular nucleic acid binding protein facilitates cardiac repair after myocardial infarction by activating β-catenin signaling[J]. J Mol Cell Cardiol, 2024, 189(4): 66-82.
|
| [22] |
刘镏. Ankrd1蛋白通过上调cyclinD1促进新生小鼠心梗后心肌再生修复的作用机制研究[D]. 南京: 南京医科大学, 2023.
LIU Z. Mechanism of action of Ankrd1 protein in promoting myocardial regeneration and repair after myocardial infarction in neonatal mice through up-regulation of cyclinD1[D]. Nanjing: Nanjing Medical University, 2023.
|
| [23] |
HOU L, ZOU Z, WANG Y, et al. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification[J]. Aging, 2024, 16(8): 6745-6756.
|
| [24] |
FENG L L, LI B W, XI Y, et al. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J]. Am J Physiol Cell Physiol, 2022, 322(2): C164-C176. doi: 10.1152/ajpcell.00344.2021
|
| [25] |
SHAN Z, ZHANG H, HE C, et al. High-protein mulberry leaves improve glucose and lipid metabolism via activation of the PI3K/Akt/PPARα/CPT-1 pathway[J]. Int J Mol Sci, 2024, 25(16): 8726. DOI: 10.3390/ijms25168726.
|
| [26] |
CHANG X, FENG X, LI S, et al. Taoren Honghua Decoction alleviates atherosclerosis by inducing autophagy and inhibiting the PI3K-AKT signaling pathway to regulate cholesterol efflux and inflammatory responses[J]. Int Immunopharmacol, 2025, 144(1): 113629. DOI: 10.1016/j.intimp.2024.113629.
|
| [27] |
CUI F, XIN H. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway[J]. Inflamm Res, 2022, 71(5-6): 669-680. doi: 10.1007/s00011-022-01557-3
|