Volume 23 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
RAO Zhenzhen, LI Yaling, SUN Yinxia, YUAN Jie, ZHAN Yan, LI Jiuhu, CHEN Lei. Construction and validation of a malnutrition risk prediction model for patients recovering from stroke[J]. Chinese Journal of General Practice, 2025, 23(8): 1275-1279. doi: 10.16766/j.cnki.issn.1674-4152.004114
Citation: RAO Zhenzhen, LI Yaling, SUN Yinxia, YUAN Jie, ZHAN Yan, LI Jiuhu, CHEN Lei. Construction and validation of a malnutrition risk prediction model for patients recovering from stroke[J]. Chinese Journal of General Practice, 2025, 23(8): 1275-1279. doi: 10.16766/j.cnki.issn.1674-4152.004114

Construction and validation of a malnutrition risk prediction model for patients recovering from stroke

doi: 10.16766/j.cnki.issn.1674-4152.004114
Funds:

 21D074

 YC2022021

  • Received Date: 2024-01-26
    Available Online: 2025-10-31
  •   Objective   Analyzing risk factors for malnutrition in patients recovering from stroke, constructing a nomogram model, and validating its predictive effect.   Methods   A total of 254 stroke recovery patients were admitted to Taihe hospital in Shiyan City from December 2021 to November 2022. Among them, 178 cases from December 2021 to July 2022 were used as the modeling group, and 76 cases from August to November 2022 were used as the validation group. The data in the modeling group were analyzed using one-way analysis and logistic regression analysis to determine the malnutrition risk factors in patients recovering from stroke. Constructed a column-line diagram model and verified the effect.   Results   The incidence of malnutrition risk in patients recovering from stroke was 60.24% (153/254). The incidences of malnutrition risk were 61.80% (110/178) and 56.58% (43/76) in the modeling and validation groups, respectively. The age (OR=1.086, P < 0.001), mRS score (OR=1.756, P=0.001), and ALB level (OR=0.842, P=0.012) were independent influencing factors for the risk of malnutrition in patients recovering from stroke. The model was constructed as follows: Logit(P)=0.402+0.083×age+0.563×mRS score-0.172×ALB level. The AUCs of the modeling and validation group models were 0.844 (95% CI: 0.788-0.900) and 0.831 (95% CI: 0.740-0.921), respectively.   Conclusion   The older the age, the higher the mRS score, and the lower the ALB level, the greater the risk of malnutrition in patients recovering from stroke. This risk prediction model constructed in this study has good discrimination and calibration, and can be used as a reference tool to facilitate early identification of malnutrition risk in patients recovering from stroke by clinical health care professionals.

     

  • loading
  • [1]
    王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144.

    WANG L D, PENG B, ZHANG H Q, et al. Brief report on stroke prevention and treatment in China, 2020[J]. Chinese Journal of Cerebrovascular Diseases, 2022, 19(2): 136-144.
    [2]
    李瑞雪, 孙舒, 明巍. 脑卒中患者营养现状分析及筛查方法[J]. 世界最新医学信息文摘, 2019, 19(72): 89-91.

    LI R X, SUN S, MING W. Analysis of the current nutritional status of stroke patients and screening methods[J]. Word Latest Medicine information, 2019, 19(72): 89-91.
    [3]
    ZHANG M, YE S, HUANG X, et al. Comparing the prognostic significance of nutritional screening tools and ESPEN-DCM on 3-month and 12-month outcomes in stroke patients[J]. Clin Nutr, 2021, 40(5): 3346-3353. doi: 10.1016/j.clnu.2020.11.001
    [4]
    NISHIOKA S, OMAGARI K, NISHIOKA E, et al. Concurrent and predictive validity of the mini nutritional assessment short-form and the geriatric nutritional risk index in older stroke rehabilitation patients[J]. J Hum Nutr Diet, 2020, 33(1): 12-22. doi: 10.1111/jhn.12699
    [5]
    杨辰杰, 陈蕙, 郭淳锋, 等. 去骨瓣减压术后患者颅内感染风险预测模型的构建及验证[J]. 中华全科医学, 2023, 21(9): 1503-1507. doi: 10.16766/j.cnki.issn.1674-4152.003156

    YANG C J, CHEN H, GUO C F, et al. Construction and validation of a predictive model for the risk of intracranial infection in patients after decompressive craniectomy[J]. Chinese Journal of General Practice, 2023, 21(9): 1503-1507. doi: 10.16766/j.cnki.issn.1674-4152.003156
    [6]
    中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715.

    Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chinese Journal of Neurology, 2019, 52(9): 710-715.
    [7]
    谢雁鸣, 王永炎. 实用中风病康复学[M]. 北京: 人民卫生出版社, 2010.

    XIE Y M, WANG Y Y. Practical Stroke Rehabilitation[M]. Beijing: People ' s Health Publishing House, 2010.
    [8]
    孙秀伟, 任海艳, 董敏, 等. 尿路造口周围潮湿相关性皮肤损伤风险预测模型的构建及应用[J]. 军事护理, 2023, 40(1): 40-44.

    SUN X W, REN H Y, DONG M, et al. Development and Application of A Risk Prediction Model for Peristomal Moisture-Associated Skin Damage[J]. Military Nursing, 2023, 40(1): 40-44.
    [9]
    王小娇, 王宁, 崔宏, 等. 应用老年综合评估技术分析老年脑卒中恢复期病人营养状态的影响因素[J]. 实用老年医学, 2022, 36(8): 809-812.

    WANG X J, WANG N, CUI H, et al. Analysis of the influencing factors of nutritional status in elderly patients with stroke during convalescence by comprehensive geriatric assessment[J]. Practical Geriatrics, 2022, 36(8): 809-812.
    [10]
    KONDRUP J, RASMUSSEN H H, HAMBERG O, et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials[J]. Clin Nutr, 2003, 22(3): 321-336. doi: 10.1016/S0261-5614(02)00214-5
    [11]
    SHAH S, VANCLAY F, COOPER B. Improving the sensitivity of the Barthel index for stroke rehabilitation[J]. J Clin Epidemiol, 1989, 42(8): 703-709. doi: 10.1016/0895-4356(89)90065-6
    [12]
    王赛华, 施加加, 孙莹, 等. 简体版改良Barthel指数在脑卒中恢复期中的信度与效度研究[J]. 中国康复, 2020, 35(4): 179-182.

    WANG S H, SHI J J, SUN Y, et al. Reliability and validity of the simplified version Modified Barthel Index in convalescence period of stroke[J]. Zhong Guo Kang Fu, 2020, 35(4): 179-182.
    [13]
    VAN SWIETEN J C, KOUDSTAAL P J, VISSER M C, et al. Interobserver agreement for the assessment of handicap in stroke patients[J]. Stroke, 1988, 19(5): 604-607. doi: 10.1161/01.STR.19.5.604
    [14]
    岳莹莹. 卒中后抑郁障碍的评估、诊断标准、风险预测及生物标记物研究[D]. 南京: 东南大学, 2017.

    YUE Y Y. The study of evaluation, diagnostic criteria, risk prediction, and biomarkers for post-stroke depression[D]. Nanjing: Southeast University, 2017.
    [15]
    BROTT T, ADAMS H J, OLINGER C P, et al. Measurements of acute cerebral infarction: a clinical examination scale[J]. Stroke, 1989, 20(7): 864-870. doi: 10.1161/01.STR.20.7.864
    [16]
    HUPPERTZ V, GUIDA S, HOLDOWAY A, et al. Impaired nutritional condition after stroke from the hyperacute to the chronic phase: a systematic review and meta-analysis[J]. Front Neurol, 2022, 12: 780080. DOI: 10.3389/fneur.2021.780080.
    [17]
    CHEN X, LI D, LIU Y, et al. Nutritional risk screening 2002 scale and subsequent risk of stroke-associated infection in ischemic stroke: the REMISE study[J]. Front Nutr, 2022, 9: 895803. DOI: 10.3389/fnut.2022.895803.
    [18]
    TSUTSUMIUCHI K, WAKABAYASHI H, MAEDA K, et al. Impact of malnutrition on post-stroke cognitive impairment in convalescent rehabilitation ward inpatients[J]. Eur Geriatr Med, 2021, 12(1): 167-174. doi: 10.1007/s41999-020-00393-0
    [19]
    CIANCARELLI I, MORONE G, IOSA M, et al. Influence of oxidative stress and inflammation on nutritional status and neural plasticity: new perspectives on post-stroke neurorehabilitative outcome[J]. Nutrients, 2022, 15(1): 108. DOI: 10.3390/nu15010108.
    [20]
    MAHMOUDINEZHAD M, KHALILI M, REZAEEMANESH N, et al. Subjective global assessment of malnutrition and dysphagia effect on the clinical and para-clinical outcomes in elderly ischemic stroke patients: a community-based study[J]. BMC Neurol, 2021, 21(1): 466. DOI: 10.1186/s12883-021-02501-4.
    [21]
    HAN X, CAI J, LI Y, et al. Baseline objective malnutritional indices as immune-nutritional predictors of long-term recurrence in patients with acute ischemic stroke[J]. Nutrients, 2022, 14(7): 1337. DOI: 10.3390/nu14071337.
    [22]
    赵诗琦, 王书, 张颖, 等. 老年肺部耐碳青霉烯肠杆菌感染风险预测模型的构建和验证[J]. 中华全科医学, 2023, 21(11): 1860-1864, 1945. doi: 10.16766/j.cnki.issn.1674-4152.003243

    ZHAO S Q, WANG S, ZHANG Y, et al. Establishment and validation of model for the risk of Carbapenem-Resistant Enterobacteriaceae infection in elderly patients with pulmonary infection[J]. Chinese Journal of General Practice, 2023, 21(11): 1860-1864, 1945. doi: 10.16766/j.cnki.issn.1674-4152.003243
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return