Volume 23 Issue 5
May  2025
Turn off MathJax
Article Contents
GONG Xueyan, LIU Yang, SU Yazhen, ZHANG Liyun. Advancements in the study of cuproptosis and copper metabolism in autoimmune diseases[J]. Chinese Journal of General Practice, 2025, 23(5): 844-847. doi: 10.16766/j.cnki.issn.1674-4152.004015
Citation: GONG Xueyan, LIU Yang, SU Yazhen, ZHANG Liyun. Advancements in the study of cuproptosis and copper metabolism in autoimmune diseases[J]. Chinese Journal of General Practice, 2025, 23(5): 844-847. doi: 10.16766/j.cnki.issn.1674-4152.004015

Advancements in the study of cuproptosis and copper metabolism in autoimmune diseases

doi: 10.16766/j.cnki.issn.1674-4152.004015
Funds:

 202103021224342

 2023L076

 202303021222313

  • Received Date: 2024-02-07
    Available Online: 2025-08-14
  • Autoimmune diseases (AIDs) are a group of disorders characterized by the abnormal attack of the body ' s immune system on its own tissues and cells. These diseases affect multiple organ systems and pose a significant threat to human health. Currently, AIDs affect approximately 5% of the global population, leading to significant economic burdens. However, the etiology of AIDs remains unclear, and existing treatment modalities are still limited in efficacy. Recent studies indicate a close association between AIDs and mitochondrial dysfunction. Cuproptosis, a newly characterized form of cell death closely related to mitochondrial respiration, suggests a potentially significant role in the onset and progression of AIDs. Since the first half of the 20th century, the biological roles of copper have remained a focal point of sustained scientific investigation in life sciences. Recent studies have shown that copper metabolism affects the functionality of the immune system and is associated with the progression of inflammation and immune responses. This paper provides a summary of the biological functions, intervention mechanisms, and bioinformatics research of cuproptosis and copper metabolism in AIDs. It systematically reviews their roles and mechanisms in AIDs such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and other diseases like osteoarthritis (OA), systematically examining the research progress of copper death and copper metabolism in AIDs. By thoroughly understanding the relationship of cuproptosis, copper metabolism, and AIDs, new therapeutic targets and approaches may be discovered, providing novel insights and possibilities for the treatment of AIDs.

     

  • loading
  • [1]
    BIEBER K, HUNDT J E, YU X, et al. Autoimmune pre-disease[J]. Autoimmu Rev, 2023, 22(2): 103236. DOI: 10.1016/j.autrev.2022.103236.
    [2]
    李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(3): 299-303.

    LI J, LYU L J. Infections in autoimmune inflammatory rheumatic diseases in the era of targeted therapies[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(3): 299-303.
    [3]
    PISETSKY D S. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19(8): 509-524.
    [4]
    GRAY P E, DAVID C. Inborn errors of immunity and autoimmune disease[J]. J Allergy Clin Immunol Pract, 2023, 11(6): 1602-1622.
    [5]
    XIAO Z X, MILLER J S, ZHENG S G. An updated advance of autoantibodies in autoimmune diseases[J]. Autoimmun Rev, 2021, 20(2): 102743. DOI: 10.1016/j.autrev.2020.102743.
    [6]
    YASUNAGA M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease[J]. Semin Cancer Biol, 2020, 8(64): 1-12.
    [7]
    LEE D S W, ROJAS O L, GOMMERMAN J L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights[J]. Nat Rev Drug Discov, 2021, 20(3): 179-199.
    [8]
    STÄNDER S, FÄRBER B, RADEKE S, et al. Assessment of healthcare costs for patients with pemphigus and bullous pemphigoid in an academic centre in germany[J]. Br J Dermatol, 2020, 182(5): 1296-1297.
    [9]
    HSIEH P H, WU O, GEUE C, et al. Economic burden of rheumatoid arthritis: a systematic review of literature in biologic era[J]. Ann Rheum Dis, 2020, 79(6): 771-777.
    [10]
    BLANCO L P, KAPLAN M J. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases[J]. PLoS Biol, 2023, 21(4): e3002084. DOI: 10.1371/journal.pbio.3002084.
    [11]
    TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
    [12]
    宋梦婷, 王振杰, 郭培霞, 等. 老年起病类风湿关节炎的诊治进展[J]. 中华全科医学, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884

    SONG M T, WANG Z J, GUO P X, et al. Advances in the diagnosis and treatment of rheumatoid arthritis in elderly patients[J]. Chinese Journal of General Practice, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
    [13]
    FINCKH A, GILBERT B, HODKINSON B, et al. Global epidemiology of rheumatoid arthritis[J]. Nat Rev Rheumatol, 2022, 18(10): 591-602.
    [14]
    LIU Y M, ZHU J L, XU L L, et al. Copper regulation of immune response and potential implications for treating orthopedic disorders[J]. Front Mol Biosci, 2022, 9: 1065265. DOI: 10.3389/fmolb.2022.1065265.
    [15]
    CIAFFAGLIONE V, RIZZARELLI E. Carnosine, zinc and copper: a menage a trois in bone and cartilage protection[J]. Int J Mol Sci, 2023, 24(22): 16209. DOI: 10.3390/ijms242216209.
    [16]
    BAÑULS-MIRETE M, OGDIE A, GUMA M. Micronutrients: essential treatment for inflammatory arthritis?[J]. Curr Rheumatol Rep, 2020, 22(12): 87. DOI: 10.1007/s11926-020-00962-z.
    [17]
    WANG H J, ZHANG R R, SHEN J, et al. Circulating level of blood iron and copper associated with inflammation and disease activity of rheumatoid arthritis[J]. Biol Trace Elem Res, 2023, 201(1): 90-97.
    [18]
    CUI X N, WANG Y, LIU H, et al. The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy[J]. Oxid Med Cell Longev, 2022, 2022: 5418376. DOI: 10.1155/2022/5418376.
    [19]
    HU H, DOU X Y, HU X J, et al. Identification of a novel cuproptosis-related gene signature for rheumatoid arthritis: a prospective study[J]. J Gene Med, 2023, 25(11): e3535. DOI: 10.1002/jgm.3535.
    [20]
    ZHOU Y, LI X, NG L Q, et al. Identification of copper death-associated molecular clusters and immunological profiles in rheumatoid arthritis[J]. Front Immunol, 2023, 14: 1103509. DOI: 10.3389/fimmu.2023.1103509.
    [21]
    JIANG M Y, LIU K C, LU S Y, et al. Verification of cuproptosis-related diagnostic model associated with immune infiltration in rheumatoid arthritis[J]. Front Endocrinol, 2023, 14: 1204926. DOI: 10.3389/fendo.2023.1204926.
    [22]
    YANG Y, LIANG S Y, GENG H E, et al. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore[J]. Free Radic Biol Med, 2022, 193(Pt 2): 638-647. DOI: 10.1016/j.freeradbiomed.2022.11.023.
    [23]
    MURI J, KOPF M. Redox regulation of immunometabolism[J]. Nat Rev Immunol, 2021, 21(6): 363-381.
    [24]
    ZUILY L, LAHRACH N, FASSLER R, et al. Copper induces protein aggregation, a toxic process compensated by molecular chaperones[J]. mBio, 2022, 13(2): e0325121. DOI: 10.1128/mbio.03251-21.
    [25]
    ZHAO H Q, WEN Z K, XIONG S D. Activated lymphocyte-derived DNA drives glucose metabolic adaptation for inducing macrophage inflammatory response in systemic lupus erythematosus[J]. Cells, 2023, 12(16). DOI: 10.3390/cells12162093.
    [26]
    赵磊, 万磊, 刘健, 等. 巨噬细胞炎症极化在类风湿关节炎中的作用[J]. 医学研究杂志, 2023, 52(2): 11-14.

    ZHAO L, WAN L, LIU J, et al. Role of macrophage inflammatory polarization in rheumatoid arthritis[J]. Journal of Medical Research, 2023, 52(2): 11-14.
    [27]
    刘郑宇, 徐亮. 51例晚发型系统性红斑狼疮的临床特点及诊治要点分析[J]. 中华全科医学, 2023, 21(8): 1271-1274. doi: 10.16766/j.cnki.issn.1674-4152.003100

    LIU Z Y, XU L. Analysis of clinical characteristics and diagnostic and treatment of 51 cases of late-onset systemic lupus erythematosus[J]. Chinese Journal of General Practice, 2023, 21(8): 1271-1274. doi: 10.16766/j.cnki.issn.1674-4152.003100
    [28]
    MUÑOZ-URBANO M, QUINTERO-GONZÁLEZ D C, VASQUEZ G. T cell metabolism and possible therapeutic targets in systemic lupus erythematosus: a narrative review[J]. Immunopharmacol Immunotoxicol, 2022, 44(4): 457-470.
    [29]
    TANG D L, CHEN X, KROEMER G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5): 417-418.
    [30]
    WANG H, LI X B, HUANG R G, et al. Essential trace element status in systemic lupus erythematosus: a meta-analysis based on case-control studies[J]. Biol Trace Elem Res, 2023, 201(5): 2170-2182.
    [31]
    YANG W J, LI L M, FENG X M, et al. Genome-wide association and mendelian randomization study of blood copper levels and 213 deep phenotypes in humans[J]. Commun Biol, 2022, 5(1): 405. DOI: 10.1038/s42003-022-03351-7.
    [32]
    LI W Q, GUAN X R, WANG Y, et al. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus[J]. Front Immunol, 2023, 14: 1157196. DOI: 10.3389/fimmu.2023.1157196.
    [33]
    XIE J M, YANG Y N, GAO Y B, et al. Cuproptosis: mechanisms and links with cancers[J]. Mol Cancer, 2023, 22(1): 46. DOI: 10.1186/s12943-023-01732-y.
    [34]
    YAO Q, WU X H, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56. DOI: 10.1038/s41392-023-01330-w.
    [35]
    ZHOU J Q, LIU C, SUN Y T, et al. Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis[J]. Osteoarthritis Cartilage, 2021, 29(7): 1029-1035.
    [36]
    LI G Y, CHENG T, YU X F. The impact of trace elements on osteoarthritis[J]. Front Med (Lausanne), 2021, 8: 771297. DOI: 10.3389/fmed.2021.771297.
    [37]
    黎咏诗, 陈鸿, 牟平, 等. 关节液和软骨中微量元素含量与膝关节骨关节炎严重程度的相关性研究[J]. 中国修复重建外科杂志, 2023, 37(5): 584-588.

    LI Y S, CHEN H, MOU P, et al. Relationship between trace elements in synovial fluid and cartilage and severity of knee osteoarthritis[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(5): 584-588.
    [38]
    YANG W M, LV J F, WANG Y Y, et al. The daily intake levels of copper, selenium, and zinc are associated with osteoarthritis but not with rheumatoid arthritis in a cross-sectional study[J]. Biol Trace Elem Res, 2023, 201(12): 5662-5670.
    [39]
    HUI D, TING X, HAN X Y, et al. Identification and immune characteristics of cuproptosis-related genes in osteoarthritis[J]. J Biol Regul Homeost Agents, 2023, 37(3): 1335-1351.
    [40]
    WANG W J, CHEN Z Y, HUA Y H. Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression[J]. Biomolecules, 2023, 13(1): 127. DOI: 10.3390/biom13010127.
    [41]
    ZHANG N D, JI C X, PENG X Y, et al. Bioinformatics analysis identified immune infiltration, risk and drug prediction models of copper-induced death genes involved in salivary glands damage of primary Sjögren's syndrome[J]. Medicine, 2022, 101(41): e31050. DOI: 10.1097/md.0000000000031050.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return