Volume 21 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
CHU Yiran, XU Shengqian. Research progress of alternative splicing in autoimmune diseases[J]. Chinese Journal of General Practice, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086
Citation: CHU Yiran, XU Shengqian. Research progress of alternative splicing in autoimmune diseases[J]. Chinese Journal of General Practice, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086

Research progress of alternative splicing in autoimmune diseases

doi: 10.16766/j.cnki.issn.1674-4152.003086
Funds:

 320.6750.2020-03-4

  • Received Date: 2022-03-06
    Available Online: 2023-08-28
  • Alternative splicing (AS) is a general mechanism for regulating gene expression, and up to 95% of human genes experience AS, meaning that this post-transcriptional regulatory mechanism is critical for almost all cellular processes. The general function of AS is to increase the diversity of mRNA expressed from the genome. AS alters the protein encoded by mRNA, which can have profound functional effects. AS is also observed in gene products of metazoan immune systems that have evolved to effectively recognize pathogens and distinguish between "self" and "non-self", possibly thanks to the diversity and flexibility that AS provides. Human immune response is a complex process that responds to many exogenous antigens, prevents microbial infections, and monitors endogenous components of tumors and autoimmune diseases, and requires a large number of molecules to support functional complex immune activities. Alternative splicing of pre-mRNA plays an important role in immune cell development and regulation of immune activity by generating multiple transcription subtypes to supplement the function of limited genes associated with immune response. In addition, multiple factors have been identified to be involved in the control of alternative splicing, where abnormal splicing of RNA can lead to infections, immune diseases, abnormalities in immune activity, and tumors. In this review, we focus on the regulation of AS in immune system cells, their impact on immunobiology and AS and autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. We summarize some of the recent findings that AS is associated with autoimmune diseases, and try to find common patterns of splicing regulation that may advance our understanding of autoimmune diseases and open up new therapeutic approaches.

     

  • loading
  • [1]
    WILKINSON M E, CHARENTON C, NAGAI K. RNA splicing by the spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388. doi: 10.1146/annurev-biochem-091719-064225
    [2]
    WAN R X, BAI R, ZHAN X C, et al. How is precursor messenger RNA spliced by the spliceosome?[J]. Annu Rev Biochem, 2020, 89: 333-358. doi: 10.1146/annurev-biochem-013118-111024
    [3]
    HASELBACH D, KOMAROV I, AGAFONOV D E, et al. Structure and conformational dynamics of the human spliceosomal Bact complex[J]. Cell, 2018, 172(3): 454-464.e11. DOI: 10.1016/j.cell.2018.01.010.
    [4]
    JORDAN P, GONÇALVES V, FERNANDES S, et al. Networks of mRNA processing and alternative splicing regulation in health and disease[J]. Adv Exp Med Biol, 2019, 1157: 1-27.
    [5]
    VANICHKINA D P, SCHMITZ U, WONG J J, et al. Challenges in defining the role of intron retention in normal biology and disease[J]. Semin Cell Dev Biol, 2018, 75: 40-49. doi: 10.1016/j.semcdb.2017.07.030
    [6]
    RADENS C M, BLAKE D, JEWELL P, et al. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing[J]. RNA, 2020, 26(10): 1320-1333. doi: 10.1261/rna.075929.120
    [7]
    WEST K O, SCOTT H M, TORRES-ODIO S, et al. The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages[J]. Cell Rep, 2019, 29(6): 1594-1609.e5. DOI: 10.1016/j.celrep.2019.09.078.
    [8]
    JANSSEN W J, DANHORN T, HARRIS C, et al. Inflammation-induced alternative pre-mRNA splicing in mouse alveolar macrophages[J]. G3(Bethesda), 2020, 10(2): 555-567.
    [9]
    LIU H F, LORENZINI P A, ZHANG F, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator[J]. Nucleic Acids Res, 2018, 46(12): 6069-6086. doi: 10.1093/nar/gky401
    [10]
    SINGH I, LEE S H, SPERLING A S, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes[J]. Nat Commun, 2018, 9(1): 1716. doi: 10.1038/s41467-018-04112-z
    [11]
    COURTNEY A H, SHVETS A A, LU W, et al. CD45 functions as a signaling gatekeeper in T cells[J]. Sci Signal, 2019, 12(604): eaaw8151. DOI: 10.1126/scisignal.aaw8151.
    [12]
    BUCHBINDER J H, PISCHEL D, SUNDMACHER K, et al. Quantitative single cell analysis uncovers the life/death decision in CD95 network[J]. PLoS Comput Biol, 2018, 14(9): e1006368. DOI: 10.1371/journal.pcbi.1006368.
    [13]
    KIST M, VUCIC D. Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40(5): e106700. DOI: 10.15252/embj.2020106700.
    [14]
    KURMA K, BOIZARD-MORACCHINI A, GALLI G, et al. Soluble CD95L in cancers and chronic inflammatory disorders, a new therapeutic target?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188596. DOI: 10.1016/j.bbcan.2021.188596.
    [15]
    VILYS L, PECIULIENE I, JAKUBAUSKIENE E, et al. U2AF-Hypoxia-induced fas alternative splicing regulator[J]. Exp Cell Res, 2021, 399(1): 112444. DOI: 10.1016/j.yexcr.2020.112444.
    [16]
    JANG H N, LIU Y, CHOI N, et al. Binding of SRSF4 to a novel enhancer modulates splicing of exon 6 of fas pre-mRNA[J]. Biochem Biophys Res Commun, 2018, 506(3): 703-708. doi: 10.1016/j.bbrc.2018.10.123
    [17]
    PECIULIENE I, VILYS L, JAKUBAUSKIENE E, et al. Hypoxia alters splicing of the cancer associated fas gene[J]. Exp Cell Res, 2019, 380(1): 29-35. doi: 10.1016/j.yexcr.2019.04.015
    [18]
    BEN-MUSTAPHA I, AGREBI N, BARBOUCHE M R. Novel insights into FAS defects underlying autoimmune lymphoproliferative syndrome revealed by studies in consanguineous patients[J]. J Leukoc Biol, 2018, 103(3): 501-508. doi: 10.1002/JLB.5MR0817-332R
    [19]
    GUÉGAN J P, LEGEMBRE P. Nonapoptotic functions of Fas/CD95 in the immune response[J]. FEBS J, 2018, 285(5): 809-827. doi: 10.1111/febs.14292
    [20]
    VINCENT F B, KANDANE-RATHNAYAKE R, KOELMEYER R, et al. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus[J]. Lupus Sci Med, 2020, 7(1): e000375. DOI: 10.1136/lupus-2019-000375.
    [21]
    STEVENS M, OLTEAN S. Modulation of the apoptosis gene Bcl-x function through alternative splicing[J]. Front Genet, 2019, 10: 804. doi: 10.3389/fgene.2019.00804
    [22]
    MURAD F, GARCIA-SAEZ A J. Bcl-xL inhibits tBid and Bax via distinct mechanisms[J]. Faraday Discuss, 2021, 232(0): 86-102. DOI: 10.1039/d0fd00045k.
    [23]
    YU S, DU M Y, YIN A, et al. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation[J]. Int J Biochem Cell Biol, 2020, 122: 105720. DOI: 10.1016/j.biocel.2020.105720.
    [24]
    宋梦婷, 王振杰, 郭培霞, 等. 老年起病类风湿关节炎的诊治进展[J]. 中华全科医学, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884

    SONG M T, WANG Z J, GUO P X, et al. Advances in the diagnosis and treatment of rheumatoid arthritis in elderly patients[J]. Chinese Journal of General Practice, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
    [25]
    WING J B, TANAKA A, SAKAGUCHI S. Human FOXP3+ regulatory T Cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. doi: 10.1016/j.immuni.2019.01.020
    [26]
    SUN X H, XIAO Y F, ZENG Z T, et al. All-Trans retinoic acid induces CD4+CD25+FOXP3+ regulatory T cells by increasing FOXP3 demethylation in systemic sclerosis CD4+ T cells[J]. J Immunol Res, 2018, 2018: 8658156. DOI: 10.1155/2018/8658156.
    [27]
    MAILER R K W. Alternative splicing of FOXP3-virtue and vice[J]. Front Immunol, 2018, 9: 530. doi: 10.3389/fimmu.2018.00530
    [28]
    RYDER L R, BARTELS E M, WOETMANN A, et al. FOXP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis[J]. APMIS, 2012, 120(5): 387-396. doi: 10.1111/j.1600-0463.2011.02848.x
    [29]
    MISHRA M N, CHANDAVARKAR V, SHARMA R, et al. Structure, function and role of CD44 in neoplasia[J]. J Oral Maxillofac Pathol, 2019, 23(2): 267-272. doi: 10.4103/jomfp.JOMFP_246_18
    [30]
    CHEN C, ZHAO S J, KARNAD A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
    [31]
    GRISAR J, MUNK M, STEINER C W, et al. Expression patterns of CD44 and CD44 splice variants in patients with rheumatoid arthritis[J]. Clin Exp Rheumatol, 2012, 30(1): 64-72.
    [32]
    KATSUYAMA T, TSOKOS G C, MOULTON V R. Aberrant T cell signaling and subsets in systemic lupus erythematosus[J]. Front Immunol, 2018, 9: 1088. doi: 10.3389/fimmu.2018.01088
    [33]
    XIAO F, CHEN L B. Effects of extracorporeal fucosylation of CD44 on the homing ability of rabbit bone marrow mesenchymal stem cells[J]. J Orthop Sci, 2019, 24(4): 725-730. doi: 10.1016/j.jos.2018.11.010
    [34]
    LATINI A, NOVELLI L, CECCARELLI F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients[J]. Lupus, 2021, 30(7): 1086-1093. doi: 10.1177/09612033211004725
    [35]
    BAARS M J D, DOUMA T, SIMEONOV D R, et al. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity[J]. Eur J Immunol, 2021, 51(2): 471-482. doi: 10.1002/eji.201948451
    [36]
    MAO H W, YANG W L, LATOUR S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease[J]. J Allergy Clin Immunol, 2018, 142(2): 595-604.e16. DOI: 10.1016/j.jaci.2017.10.026.
    [37]
    KONO M, KURITA T, YASUDA S, et al. Decreased expression of serine/arginine-rich splicing factor 1 in t cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA methyltransferase 1[J]. Arthritis Rheumatol, 2018, 70(12): 2046-2056. doi: 10.1002/art.40585
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (690) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return