Citation: | TONG Li, ZHENG Xiaofei, GU Wang, ZHANG Chong, ZHANG Chao. Research status of autophagy in hepatocellular carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 672-676. doi: 10.16766/j.cnki.issn.1674-4152.002957 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
王攀, 王毅超, 虞丹丹, 等. miR-1246在肝癌血清中的表达及对肝癌HepG2细胞生物学功能的影响[J]. 中华全科医学, 2021, 19(8): 1292-1295, 1313. doi: 10.16766/j.cnki.issn.1674-4152.002043
WANG P, WANG Y C, YU D D, et al. Expression of microRNA-1246 in the serum of hepatocellular carcinoma and its effect on biological function of HepG2 cells[J]. Chinese Journal of General Practice, 2021, 19(8): 1292-1295, 1313. doi: 10.16766/j.cnki.issn.1674-4152.002043
|
[3] |
NOGUCHI M, HIRATA N, TANAKA T, et al. Autophagy as a modulator of cell death machinery[J]. Cell Death Dis, 2020, 11(7): 517. doi: 10.1038/s41419-020-2724-5
|
[4] |
SANKAR D S, HU Z H, DENGJEL J. The complex interplay between ULK1 and protein phosphatases in autophagy regulation[J]. Autophagy, 2022, 18(2): 455-456. doi: 10.1080/15548627.2021.2002546
|
[5] |
EITZEN G, SMITHERS C C, MURRAY A G, et al. Structure and function of the fgd family of divergent FYVE domain proteins1[J]. Biochem Cell Biol, 2019, 97(3): 257-264. doi: 10.1139/bcb-2018-0185
|
[6] |
陈佳锋, 傅修涛, 丁振斌. 自噬调控多功能蛋白p62/SQSTM1参与肿瘤及其微环境的研究进展[J]. 中国临床医学, 2020, 27(2): 321-326. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX202002034.htm
CHEN J F, FU X T, DING Z B. Advances in autophagy-regulated multifunctional protein p62/SQSTM1 in tumor and its microenvironment[J]. Chinese Journal of Clinical Medicine, 2020, 27(2): 321-326. https://www.cnki.com.cn/Article/CJFDTOTAL-LCYX202002034.htm
|
[7] |
CAO W Y, LI J H, YANG K P, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322. doi: 10.1016/j.bulcan.2020.11.004
|
[8] |
LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. http://d.wanfangdata.com.cn/periodical/31b5f70675ba1ae032e1c8d10a5592ad
|
[9] |
LI X H, HE S K, MA B Y. Autophagy and autophagy-related proteins in cancer[J]. Mol Cancer, 2020, 19(1): 12. doi: 10.1186/s12943-020-1138-4
|
[10] |
SZWED A, KIM E, JACINTO E. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiol Rev, 2021, 101(3): 1371-1426. doi: 10.1152/physrev.00026.2020
|
[11] |
WANG Y, ZHANG H B. Regulation of autophagy by mTOR signaling pathway[J]. Adv Exp Med Biol, 2019, 1206: 67-83. http://d.wanfangdata.com.cn/periodical/cbf1fa43d51a2b9e94ab23104bc32c91
|
[12] |
高利昆, 袁静萍, 洪莉. 细胞自噬与肿瘤治疗的研究进展[J]. 中国组织化学与细胞化学杂志, 2020, 29(2): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GGZZ202002015.htm
GAO L K, YUAN J P, HONG L. Recent progress in autophagy and tumor therapy[J]. Chinese Journal of Histochemistry and Cytochemistry, 2020, 29(2): 183-187. https://www.cnki.com.cn/Article/CJFDTOTAL-GGZZ202002015.htm
|
[13] |
WANG X Y, LIN Y, LIU S, et al. O-GlcNAcylation modulates HBV replication through regulating cellular autophagy at multiple levels[J]. FASEB J, 2020, 34(11): 14473-14489. DOI: 10.1096/fj.202001168RR.
|
[14] |
XIE M J, YANG Z G, LIU Y N, et al. The role of HBV-induced autophagy in HBV replication and HBV related-HCC[J]. Life Sci, 2018, 205: 107-112. doi: 10.1016/j.lfs.2018.04.051
|
[15] |
CHU J Y K, OU J J. Autophagy in HCV replication and protein trafficking[J]. Int J Mol Sci, 2021, 22(3): 1089. doi: 10.3390/ijms22031089
|
[16] |
DEVIS-JAUREGUI L, ERITJA N, DAVIS M L, et al. Autophagy in the physiological endometrium and cancer[J]. Autophagy, 2021, 17(5): 1077-1095. doi: 10.1080/15548627.2020.1752548
|
[17] |
POILLET-PEREZ L, WHITE E. Role of tumor and host autophagy in cancer metabolism[J]. Genes Dev, 2019, 33(11-12): 610-619. doi: 10.1101/gad.325514.119
|
[18] |
YAZDANI H O, HUANG H, TSUNG A. Autophagy: dual response in the development of hepatocellular carcinoma[J]. Cells, 2019, 8(2): 91. doi: 10.3390/cells8020091
|
[19] |
DERETIC V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. doi: 10.1016/j.immuni.2021.01.018
|
[20] |
LARABI A, BARNICH N, NGUYEN H. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16(1): 38-51. doi: 10.1080/15548627.2019.1635384
|
[21] |
WANG L P, LI H T, ZHEN Z J, et al. CXCL17 promotes cell metastasis and inhibits autophagy via the LKB1-AMPK pathway in hepatocellular carcinoma[J]. Gene, 2019, 690: 129-136. doi: 10.1016/j.gene.2018.12.043
|
[22] |
DENK H, STUMPTNER C, ABUJA P M, et al. Sequestosome 1/p62-related pathways as therapeutic targets in hepatocellular carcinoma[J]. Expert Opin Ther Targets, 2019, 23(5): 393-406. doi: 10.1080/14728222.2019.1601703
|
[23] |
XING M T, LI P, WANG X, et al. Overexpression of p62/IMP2 can promote cell migration in hepatocellular carcinoma via activation of the Wnt/beta-catenin pathway[J]. Cancers (Basel), 2019, 12(1): 7. doi: 10.3390/cancers12010007
|
[24] |
BARTOLINI D, DALLAGLIO K, TORQUATO P, et al. Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma[J]. Transl Res, 2018, 193: 54-71. doi: 10.1016/j.trsl.2017.11.007
|
[25] |
LIANG C J, LI W, GE H, et al. Role of Beclin1 expression in patients with hepatocellular carcinoma: a meta-analysis[J]. Onco Targets Ther, 2018, 11: 2387-2397. doi: 10.2147/OTT.S151751
|
[26] |
KIRUTHIGA C, DEVI K P, NABAVI S M, et al. Autophagy: a potential therapeutic target of polyphenols in hepatocellular carcinoma[J]. Cancers (Basel), 2020, 12(3): 562. doi: 10.3390/cancers12030562
|
[27] |
HUANG F, WANG B R, WANG Y G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma[J]. World J Gastroentero, 2018, 24(41): 4643-4651. doi: 10.3748/wjg.v24.i41.4643
|
[28] |
SCHITO L, REY S. Cell-Autonomous metabolic reprogramming in hypoxia[J]. Trends Cell Biol, 2018, 28(2): 128-142. doi: 10.1016/j.tcb.2017.10.006
|
[29] |
HAZARI Y, BRAVO-SAN P J, HETZ C, et al. Autophagy in hepatic adaptation to stress[J]. J Hepatol, 2020, 72(1): 183-196. doi: 10.1016/j.jhep.2019.08.026
|
[30] |
MOWERS E E, SHARIFI M N, MACLEOD K F. Functions of autophagy in the tumor microenvironment and cancer metastasis[J]. FEBS J, 2018, 285(10): 1751-1766. doi: 10.1111/febs.14388
|
[31] |
LI X Q, GAO L, ZHENG L J, et al. BMP4-mediated autophagy is involved in the metastasis of hepatocellular carcinoma via JNK/Beclin1 signaling[J]. Am J Transl Res, 2020, 12(6): 3068-3077.
|
[32] |
LIANG C, DONG Z B, CAI X L, et al. Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma[J]. Cell Death Dis, 2020, 11(11): 1017. doi: 10.1038/s41419-020-03233-y
|
[33] |
CHEN H T, LIU H, MAO M J, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy[J]. Mol Cancer, 2019, 18(1): 101. http://www.socolar.com/Article/Index?aid=200269641350&jid=200000134032
|
[34] |
KMA L, BARUAH T J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation[J]. Biotechnol Appl Biochem, 2022, 69(1): 248-264. doi: 10.1002/bab.2104
|
[35] |
SEITZ H K, MUELLER S. The role of Cytochrom P4502E1 in alcoholic liver disease and alcohol mediated carcinogenesis[J]. Z Gastroenterol, 2019, 57(1): 37-45.
|
[36] |
BARTOLINI D, DALLAGLIO K, TORQUATO P, et al. Nrf2-p62 autophagy pathway and its response to oxidative stress in hepatocellular carcinoma[J]. Transl Res, 2018, 193: 54-71. http://download.xuebalib.com/89drev3F8B.pdf
|
[37] |
QIAN H, CHAO X J, WILLIAMS J, et al. Autophagy in liver diseases: a review[J]. Mol Aspects Med, 2021, 82: 100973. DOI: 10.1016/j.mam.2021.100973.
|
[38] |
ZHENG Y H, HUANG C, LU L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol, 2021, 14(1): 16. http://www.socolar.com/Article/Index?aid=200259985143&jid=200000133853
|
[39] |
WANG X H, LI M, REN K B, et al. On-Demand autophagy cascade amplification nanoparticles precisely enhanced oxaliplatin-induced cancer immunotherapy[J]. Adv Mater, 2020, 32(32): e2002160. DOI: 10.1002/adma.202002160.
|
[40] |
FRICKER L D. Proteasome inhibitor drugs[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 457-476. http://d.wanfangdata.com.cn/periodical/d14f7185eafdc1a11b7ddbc014116ab9
|
[41] |
BHAT P, KRIEL J, SHUBHA P B, et al. Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization[J]. Biochem Pharmacol, 2018, 147: 170-182. http://www.onacademic.com/detail/journal_1000040132151810_9630.html
|
[42] |
SHENG J Y, QIN H J, ZHANG K, et al. Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma[J]. Am J Cancer Res, 2018, 8(3): 354-365.
|
[43] |
GAO C, FANG L, ZHANG H, et al. Metformin induces autophagy via the AMPK-mTOR signaling pathway in human hepatocellular carcinoma cells[J]. Cancer Manag Res, 2020, 12: 5803-5811. http://doc.paperpass.com/foreign/rgArti2020267290860.html
|
[44] |
LAI H Y, TSAI H H, YEN C J, et al. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-Dependent autophagy activation[J]. Front Cell Dev Biol, 2020, 8: 596655. DOI: 10.3389/fcell.2020.596655.
|
[45] |
TANG W W, CHEN Z Y, ZHANG W L, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J]. Signal Transduct Target Ther, 2020, 5(1): 87. http://www.xueshufan.com/publication/3035408975
|
[46] |
YANG Q Z, GAO L H, HUANG X L, et al. Sorafenib prevents the proliferation and induces the apoptosis of liver cancer cells by regulating autophagy and hypoxia-inducible factor-1[J]. Exp Ther Med, 2021, 22(3): 980. http://www.xueshufan.com/publication/3179639326
|