Citation: | SU Bo, YAN Zhen-yu, WANG Xin-xin, QIAN Guo-wu, ZHANG Sen, WANG Jing-xuan. Expression of interleukin-23 in carcinoma tissues and its relationship with clinical prognosis in patients with colorectal cancer[J]. Chinese Journal of General Practice, 2022, 20(8): 1295-1298. doi: 10.16766/j.cnki.issn.1674-4152.002580 |
[1] |
ZHU J, TAN Z, HOLLIS-HANSEN K, et al. Epidemiological trends in colorectal cancer in China: An ecological study[J]. Dig Dis Sci, 2017, 62(1): 235-243. doi: 10.1007/s10620-016-4362-4
|
[2] |
DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480. doi: 10.1016/S0140-6736(19)32319-0
|
[3] |
GAO R, GAO Z, HUANG L, et al. Gut microbiota and colorectal cancer[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(5): 757-769. doi: 10.1007/s10096-016-2881-8
|
[4] |
WROBEL P, AHMED S. Current status of immunotherapy in metastatic colorectal cancer[J]. Int J Colorectal Dis, 2019, 34(1): 13-25. doi: 10.1007/s00384-018-3202-8
|
[5] |
TUOMISTO A E, MÄKINEN M J, VÄYRYNEN J P. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance[J]. World J Gastroenterol, 2019, 25(31): 4383-4404. doi: 10.3748/wjg.v25.i31.4383
|
[6] |
SHAWKI S, ASHBURN J, SIGNS S A, et al. Colon cancer: Inflammation-associated cancer[J]. Surg Oncol Clin N Am, 2018, 27(2): 269-287. doi: 10.1016/j.soc.2017.11.003
|
[7] |
ZHU G, CHENG Z, LIN C, et al. MyD88 regulates LPS-induced NF-κB/MAPK cytokines and promotes inflammation and malignancy in colorectal cancer cells[J]. Cancer Genomics Proteomics, 2019, 16(6): 409-419. doi: 10.21873/cgp.20145
|
[8] |
SUZUKI Y, OKABAYASHI K, HASEGAWA H, et al. Comparison of preoperative inflammation-based prognostic scores in patients with colorectal cancer[J]. Ann Surg, 2018, 267(3): 527-531. doi: 10.1097/SLA.0000000000002115
|
[9] |
YAN J, SMYTH M J, TENG M W L. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer[J]. Cold Spring Harb Perspect Biol, 2018, 10(7): a028530. DOI: 10.1101/cshperspect.a028530.
|
[10] |
WANG J J, LEI K F, HAN F. Tumor microenvironment: Recent advances in various cancer treatments[J]. Eur Rev Med Pharmacol Sci, 2018, 22(12): 3855-3864.
|
[11] |
VITALE I, MANIC G, COUSSENS L M, et al. Macrophages and metabolism in the tumor microenvironment[J]. Cell Metab, 2019, 30(1): 36-50. doi: 10.1016/j.cmet.2019.06.001
|
[12] |
牛玉苗, 严翔, 齐宏妍, 等. 肿瘤微环境中主要炎症细胞因子对PD-L1表达调控的研究进展[J]. 中国病理生理杂志, 2020, 36(9): 1704-1708. doi: 10.3969/j.issn.1000-4718.2020.09.024
NIU Y M, YAN X, QI H Y, et al. Progress on regulation of PD-L1 expression by major inflammatory cytokines in tumor microenvironment[J]. Chinese Journal of Pathophysiology, 2020, 36(9): 1704-1708. doi: 10.3969/j.issn.1000-4718.2020.09.024
|
[13] |
SINGH N, BABY D, RAJGURU J P, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121-126. doi: 10.4103/aam.aam_56_18
|
[14] |
张小聪, 陈小伍, 朱达坚. IL-23与结直肠癌发生及发展的研究进展[J]. 医学理论与实践, 2017, 30(23): 3475-3477. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLL201723011.htm
ZHANG X C, CHEN X W, ZHU D J. Research progress of IL-23 and the genesis and development of colorectal cancer[J]. The Journal of Medical Theory and Practice, 2017, 30(23): 3475-3477. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLL201723011.htm
|
[15] |
TAMASSIA N, ARRUDA-SILVA F, WRIGHT H L, et al. Human neutrophils activated via TLR8 promote Th17 polarization through IL-23[J]. J Leukoc Biol, 2019, 105(6): 1155-1165. doi: 10.1002/JLB.MA0818-308R
|
[16] |
HURTADO C G, WAN F, HOUSSEAU F, et al. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer[J]. Gastroenterology, 2018, 155(6): 1706-1715. doi: 10.1053/j.gastro.2018.08.056
|
[17] |
LIM K S, YONG Z W E, WANG H, et al. Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells[J]. J Biol Chem, 2020, 295(19): 6387-6400. doi: 10.1074/jbc.RA120.012943
|
[18] |
CHEN J, ZHU Z, LI Q, et al. Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9[J]. J Invest Dermatol, 2021, 141(4): 787-799. doi: 10.1016/j.jid.2020.07.028
|
[19] |
KHABBAZI S, HASSANSHAHI M, HASSANSHAHI A, et al. Opioids and matrix metalloproteinases: The influence of morphine on MMP-9 production and cancer progression[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(2): 123-133. doi: 10.1007/s00210-019-01613-6
|
[20] |
ELESSAWI D F, ALKADY M M, IBRAHIM I M. Diagnostic and prognostic value of serum IL-23 in colorectal cancer[J]. Arab J Gastroenterol, 2019, 20(2): 65-68. doi: 10.1016/j.ajg.2019.05.002
|
[21] |
赖志亨, 邹江. LINC00261和miR-522-3p在结直肠癌中的表达及其与患者预后的关系[J]. 国际检验医学杂志, 2021, 42(8): 991-995. doi: 10.3969/j.issn.1673-4130.2021.08.023
LAI Z H ZOU J. Expression of LINC00261 and miR-522-3p and their relationship with prognosis in colorectal cancer patients[J]. International Journal of Laboratory Medicine, 2021, 42(8): 991-995. doi: 10.3969/j.issn.1673-4130.2021.08.023
|
[22] |
潘丽, 孙国平. 结直肠癌根治术后复发危险因素分层分析[J]. 中华肿瘤防治杂志, 2018, 25(4): 270-274. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201804009.htm
PAN L, SUN G P. Risk stratification analysis of recurrence after radical resection of colorectal cancer[J]. Chinese Journal of Cancer Prevention and Treatment, 2018, 25(4): 270-274. https://www.cnki.com.cn/Article/CJFDTOTAL-QLZL201804009.htm
|