Citation: | WANG Hai-bo, CUI Wei, YANG Wei-li. Multi-sequence MRI-based radiomics predicting lymph-vascular space invasion in early-stage cervical cancer[J]. Chinese Journal of General Practice, 2021, 19(12): 2088-2092. doi: 10.16766/j.cnki.issn.1674-4152.002244 |
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[2] |
SHIM S H, LIM M C, KIM H J, et al. Can simple trachelectomy or conization show comparable survival rate compared with radical trachelectomy in IA1 cervical cancer patients with lymphovascular space invasion who wish to save fertility? A systematic review and guideline recommendation[J]. PLoS One, 2018, 13(1): e0189847. doi: 10.1371/journal.pone.0189847
|
[3] |
LI M, WU S W, XIE Y Q, et al. Cervical invasion lymphovascular space invasion, and ovarian metastasis as predictors of lymph node metastasis and poor outcome on stages Ⅰ to Ⅲ endometrial cancers: A single-center retrospective study[J]. World J Surg Oncol, 2019, 17(1): 193. doi: 10.1186/s12957-019-1733-2
|
[4] |
PATEL-LIPPMANN K, ROBBINS J B, BARROIHET L, et al. MR imaging of cervical cancer[J]. Magn Reson Imaging Clin N Am, 2017, 25(3): 635-649. doi: 10.1016/j.mric.2017.03.007
|
[5] |
XIAO M, YAN B, LI Y, et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: A meta-analysis[J]. Eur Radiol, 2020, 30(3): 1405-1418. doi: 10.1007/s00330-019-06461-9
|
[6] |
XIAO M, MA F, LI Y, et al. Multiparametric MRI-based radiomics nomogram for predicting lymph node metastasis in early-stage cervical cancer[J]. J Magn Reson Imaging, 2020, 52(3): 885-896. doi: 10.1002/jmri.27101
|
[7] |
FANG J, ZHANG B, WANG S, et al. Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer[J]. Theranostics, 2020, 10(5): 2284-2292. doi: 10.7150/thno.37429
|
[8] |
LÓPEZ-CARBALLEIRA A, BALEATO-GONZÁLEZ S, GARCIA-FIGUEIRAS R, et al. Magnetic resonance imaging for staging and treatment planning in cervical cancer[J]. Radiologia, 2016, 58(4): 268-276. doi: 10.1016/j.rx.2015.11.008
|
[9] |
NOMDEN C N, PÖTTER R, D E LEEUW A A C, et al. Nodal failure after chemo-radiation and MRI guided brachytherapy in cervical cancer: Patterns of failure in the EMBRACE study cohort[J]. Radiother Oncol, 2019, 134: 185-190. doi: 10.1016/j.radonc.2019.02.007
|
[10] |
霍文礼, 由英宁, 卢再鸣, 等. 18F-FDG PET/CT纹理特征联合MMP-7表达预测早期宫颈癌盆腔淋巴结转移[J]. 临床放射学, 2021, 40(1): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFS202101039.htm
|
[11] |
LU Y, PENG W, SONG J, et al. On the potential use of dynamic contrast-enhanced (DCE) MRI parameters as radiomic features of cervical cancer[J]. Med Phys, 2019, 46(11): 5098-5109. doi: 10.1002/mp.13821
|
[12] |
JALAGUIER-COUDRAY A, VILLARD-MAHJOUB R, DELOUCHE A, et al. Value of dynamic contrast enhanced and diffusion weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: A retrospective observational study[J]. Radiology, 2017, 284(2): 432-442. doi: 10.1148/radiol.2017161299
|
[13] |
PENG J, WANG W, ZENG D. Application of magnetic resonance imaging in diagnosis of Uterus Cervical Carcinoma[J]. J Xray Sci Technol, 2017, 25(2): 205-211.
|
[14] |
LI Z, LI H, WANG S, et al. MR-Based radiomics nomogram of cervical cancer in prediction of the lymph-vascular space invasion preoperatively[J]. J Magn Reson Imaging, 2019, 49(5): 1420-1426. doi: 10.1002/jmri.26531
|
[15] |
WANG T, GAO T, GUO H, et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram[J]. Eur Radiol, 2020, 30(6): 3585-3593. doi: 10.1007/s00330-019-06655-1
|
[16] |
LIN Y C, LIN C H, LU H Y, et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol, 2020, 30(3): 1297-1305. doi: 10.1007/s00330-019-06467-3
|
[17] |
VARGHESE B A, CHEN F, HWANG D H, et al. Differentiation of predominantly solid enhancing lipid-poor renal cell masses by use of contrast-enhanced CT: Evaluating the role of texture in tumor subtyping[J]. AJR Am J Roentgenol, 2018, 211(6): W288-296. https://pubmed.ncbi.nlm.nih.gov/30240299/
|