Advances of miR-124 in cerebral ischemia-reperfusion injury
-
摘要: 微小核糖核酸(microRNA, miRNA)是一类进化上高度保守的非编码中链小分子RNA,能够参与调节脑缺血再灌注损伤(cerebral ischemia reperfusion injury, CIRI)病理生理过程,被认为是潜在的脑缺血(cerebral ischemia, CI)诊断生物标志物。miR-124是大脑皮层和小脑中优先表达的miRNA,在缺血性脑损伤发生后,miR-124与人体内多个靶点结合,通过调控细胞凋亡、自噬、神经炎症、氧化应激反应、促进神经保护与再生、抑制兴奋性氨基酸毒性等多种机制调节缺血性脑损伤的发展走向,具有一定的神经恢复潜力,且在调控细胞凋亡、神经炎症的过程中具备负向调节作用。但目前有关miR-124调控缺血性脑损伤在临床层面的证据相对匮乏,需要在广泛的临床试验中进一步论证其作为缺血性脑损伤诊断生物标志物、治疗靶点的可能性。Abstract: MicroRNAs (miRNAs) are a class of evolutionarily highly conserved non-coding medium-stranded small molecule RNAs that can participate in regulating the pathophysiological processes of cerebral ischemia-reperfusion injury (CIRI). They are also considered as potential diagnostic biomarkers of cerebral ischemia (CI). miR-124 is a preferentially expressed miRNA in the cerebral cortex and cerebellum, which binds to multiple targets in the body after ischemic brain injury. It regulates the development of ischemic brain injury through various mechanisms such as regulation of apoptosis, autophagy, neuroinflammation, oxidative stress, promotion of neuroprotection and regeneration and inhibition of excitatory amino acid toxicity. In addition, it has a certain potential for neurorestoration by regulating the development of brain injury. Moreover, it has a negative regulatory role in regulating apoptosis and neuroinflammation. However, there is a paucity of evidence on miR-124 regulation of ischemic brain injury at the clinical level. Therefore, its potential as a diagnostic biomarker and therapeutic target for ischemic brain injury needs to be further demonstrated in extensive clinical trials.
-
Key words:
- Cerebral ischemia reperfusion injury /
- Cerebral ischemia /
- MicroRNA-124 /
- Biomarkers /
- Targets /
- Review
-
表 1 miR-124不同表达部位、疾病模型参与调控CIRI的机制
Table 1. miR-124 mechanisms involved in the regulation of CIRI by different expression sites and disease models
miR-124的表达部位/疾病模型 miR-124的直接靶点/通路 效应机制 参考文献 LPS刺激激活的小胶质细胞 p38/p62 miR-124通过靶向p62/p38表达抑制促炎介质的分泌,促进炎症发病机制中的自噬。 [27] 星形胶质细胞 GLT1/EAAT2 神经元细胞核外的miR-124a可以增加星形胶质细胞内GLT1/EAAT2的表达,快速清除突触部位过量的Glu,减少神经元兴奋性氨基酸毒性作用。 [59] OGD诱导的PC12细胞和大鼠CIRI模型 PI3K/Akt2 miR-124表达下降,负性调控PI3K/Akt2信号通路,可能上调Nrf2在PC12细胞中的表达,减轻神经炎症,保护神经。 [35] 大鼠MACO模型 STAT3 TCZ可以通过激活miR-124介导的STAT3信号通路,减少神经细胞的凋亡。 [5, 20] Notch3 电针刺激MACO小鼠,可提高miR-124a靶向的Notch3信号通路相关基因表达水平,改善神经功能恢复,减少脑梗死面积,降低海马神经元凋亡。 [21, 23] 大鼠HIE模型 JAK2/STAT3/Bcl-2 β干扰素通过激活miR-124介导的JAK1/STAT3/Bcl-2通路以保护神经。 [5, 18] 表 2 miR-124参与调控CIRI的生物学过程
Table 2. miR-124 involved in regulating the biological process of CIRI
miR-124调控CIRI的生物学过程 miR-124的直接靶点/通路 效应机制 参考文献 细胞凋亡 3'UTR miR-124作用于CREB的3'UTR后引起CREB活化,促进抗凋亡、保护蛋白分子、BDNF等表达,促进神经元再生与修复以保护脑神经。 [16] Ku70 敲除脑miR-124可减少细胞死亡和梗死面积,并通过负向调节Ku70改善CIRI导致的神经损伤。 [22] 细胞自噬 PI3K/AKT/mTOR miR-124负调控PI3K/AKT/mTOR通路,减弱细胞自噬,减轻神经损伤。 [30] NF-κB/p53 miR-124可通过NF-κB/p53通路降低p53的表达,抑制自噬,促进脑卒中和脑损伤的神经元细胞存活。 [32] 神经炎症 TLR4 miR-124-3p直接作用于SPTLC2,调节TLR4信号通路,阻止MyD88的招募及NF-κB激活,从而减少促炎细胞因子的释放。 [37] 氧化应激 GSK-3β miR-124可能裂解GSK-3β,抑制其活性来减轻神经元损伤,抵抗OS。 [44-45] PI3K/AKT/mTOR miR-124激活PI3K/AKT/mTOR通路,减轻CIRI诱导的OS等。 [46-47] 促进神经保护与再生 NPs 脑室内递送miR-124负载NPs促进了缺氧缺糖后脑室下区神经干细胞的神经元分化,有助于脑卒中后神经突触形成和行为恢复。 [50] Usp14 miR-124直接靶向抑制Usp14,介导REST的降低,且能将小胶质细胞/巨噬细胞转变为M2抗炎表型以释放抗炎因子,并激活调节性T细胞,增强神经元分化和神经血管重塑。 [4, 54] 抑制兴奋性氨基酸毒性 Akt/mTOR miR-124通过Akt和mTOR途径调节OGD/再灌注后星形胶质细胞GLT-1的表达,清除突触部位过量Glu,防止中枢神经系统细胞外Glu过度积累。 [59] -
[1] OTSU Y, NAMEKAWA M, TORIYABE M, et al. Strategies to prevent hemorrhagic transformation after reperfusion therapies for acute ischemic stroke: a literature review[J]. J Neurol Sci, 2020, 419: 117217. DOI: 10.1016/j.jns.2020.117217. [2] GRAHAM S H, LIU H. Life and death in the trash heap: the ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral ischemia[J]. Ageing Res Rev, 2017, 34: 30-38. doi: 10.1016/j.arr.2016.09.011 [3] JEYASEELAN K, LIM K Y, ARMUGAM A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke, 2008, 39(3): 959-966. doi: 10.1161/STROKEAHA.107.500736 [4] LEWIS B P, BUIGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035 [5] KHOSHNAM S E, WINLOW W, FARBOOD Y, et al. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents[J]. J Stroke, 2017, 19(2): 166-187. doi: 10.5853/jos.2016.01368 [6] ẢKERBLOM M, SACHDEVA R, BARDE I, et al. MicroRNA-124 is a subventricular zone neuronal fate determinant[J]. J Neurosci, 2012, 32(26): 8879-8889. doi: 10.1523/JNEUROSCI.0558-12.2012 [7] GONZÁLEZ-GIRALDO Y, CAMARGO A, LÓPEZ-LEÓN S, et al. A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample[J]. Eur Psychiatry, 2015, 30(4): 499-503. doi: 10.1016/j.eurpsy.2015.03.002 [8] LIU X, FENG Z, DU L, et al. The potential role of microRNA-124 in cerebral ischemia injury[J]. Int J Mol Sci, 2019, 21(1): 120. doi: 10.3390/ijms21010120 [9] YANG J, ZHANG X, CHEN X, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Mol Ther Nucleic Acids, 2017, 7: 278-287. doi: 10.1016/j.omtn.2017.04.010 [10] OBENG E. Apoptosis (programmed cell death) and its signals: a review[J]. Braz J Biol, 2021, 81(4): 1133-1143. doi: 10.1590/1519-6984.228437 [11] ERMINE C M, BIVARD A, PARSONS M W, et al. The ischemic penumbra: from concept to reality[J]. Int J Stroke, 2021, 16(5): 497-509. doi: 10.1177/1747493020975229 [12] HU S, CAO Q, XU P, et al. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMPresponsive element binding protein pathway following ischemic stroke in rats[J]. Exp Ther Med, 2016, 11(3): 1005-1010. doi: 10.3892/etm.2015.2958 [13] WANG W, WANG X, CHEN L, et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity[J]. Expert Rev Mol Med, 2016, 18: e4. DOI: 10.1017/erm.2016.3. [14] 靳贺超, 于文涛, 刘晓, 等. 补肾活血方对血管性痴呆大鼠脑海马细胞凋亡及ERK2, CREB表达的影响[J]. 中国实验方剂学杂志, 2018, 24(12): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201812021.htmJIN H C, YU W T, LIU X, et al. Effect of Bushen Huoxue Formula on Hippocampal Cells Apoptosis and ERK2, CREB Expression in Rats with Vascular Dementia[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(12): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201812021.htm [15] HAMZEI TAI S, KHO W, ASWENDT M, et al. Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia[J]. J Neuroimmune Pharmacol, 2016, 11(4): 733-748. doi: 10.1007/s11481-016-9700-y [16] CHEN X M, YU Y H, WANG L, et al. Effect of the JAK2/STAT3 signaling pathway on nerve cell apoptosis in rats with white matter injury[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 321-327. [17] WANG S, ZHOU J, KANG W, et al. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model[J]. Bosn J Basic Med Sci, 2016, 16(2): 145-150. [18] LIU X S, CHOPP M, ZHANG R L, et al. MicroRNA profiling in subventricular zone after stroke: miR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway[J]. PLoS One, 2011, 6(8): e23461. DOI: 10.1371/journal.pone.0023461. [19] TIAN R, WANG S. Electroacupuncture reduced apoptosis of hippocampal neurons in mice with cerebral infarction by regulating the Notch3 signaling pathway[J]. J Mol Neurosci, 2019, 67(3): 456-466. doi: 10.1007/s12031-018-1253-5 [20] ZHU F, LIU J L, LI J P, et al. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion[J]. J Mol Neurosci, 2014, 52(1): 148-155. doi: 10.1007/s12031-013-0155-9 [21] LIU X, LI F, ZHAO S, et al. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke[J]. Stroke, 2013, 44(7): 1973-1980. doi: 10.1161/STROKEAHA.111.000613 [22] YUN Q, JIANG M, WANG J, et al. Overexpression Bax interacting factor-1 protects cortical neurons against cerebral ischemia-reperfusion injury through regulation of ERK1/2 pathway[J]. J Neurol Sci, 2015, 357(1-2): 183-191. doi: 10.1016/j.jns.2015.07.027 [23] HAM O, LEE S Y, LEE C Y, et al. Let-7b suppresses apoptosis and autophagy of human mesenchymal stem cells transplanted into ischemia/reperfusion injured heart 7by targeting caspase-3[J]. Stem Cell Res Ther, 2015, 6(1): 147. doi: 10.1186/s13287-015-0134-x [24] YAO L, ZHU Z, WU J, et al. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease[J]. Faseb J, 2019, 33(7): 8648-8665. doi: 10.1096/fj.201900363R [25] ZHU H, WANG J, SHAO Y, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[J]. Ann Transl Med, 2019, 7(14): 306. doi: 10.21037/atm.2019.06.25 [26] ZHAO J, DONG Y, CHEN X, et al. p53 Inhibition protects against neuronal ischemia/reperfusion injury by the p53/PRAS40/mTOR pathway[J]. Oxid Med Cell Longev, 2021: 4729465. DOI: 10.1155/2021/4729465. [27] PAN J, LI X, GUO F, et al. Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway[J]. Biosci Rep, 2019, 39(9): BSR20191452. DOI: 10.1042/BSR20191452. [28] LIU K, CHEN W, LEI S, et al. Wild-type and mutant p53 differentially modulate miR-124/iASPP feedback following pohotodynamic therapy in human colon cancer cell line[J]. Cell Death Dis, 2017, 8(10): e3096. DOI: 10.1038/cddis.2017.477. [29] BURROWS F, HALEY M J, SCOTT E, et al. Systemic inflammation affects reperfusion following transient cerebral ischaemia[J]. Exp Neurol, 2016, 277: 252-260. doi: 10.1016/j.expneurol.2016.01.013 [30] LANG H, ZHAO F, ZHANG T, et al. Micro RNA-149 contributes to scarless wound healing by attenuating inflammatory response[J]. Mol Med Rep, 2017, 16(2): 2156-2162. doi: 10.3892/mmr.2017.6796 [31] KWON H S, KOH S H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. doi: 10.1186/s40035-020-00221-2 [32] WEN Z, HOU W, WU W, et al. 6'-O-Galloylpaeoniflorin attenuates cerebral ischemia reperfusion-induced neuroinflammation and oxidative stress via PI3K/Akt/Nrf2 activation[J]. Oxid Med Cell Longev, 2018: 8678267. DOI: 10.1155/2018/8678267. [33] SUN H, LI J J, FENG Z R, et al. MicroRNA-124 regulates cell pyroptosis during cerebral ischemia-reperfusion injury by regulating STAT3[J]. Exp Ther Med, 2020, 20(6): 227. [34] SU X, YE Y, YANG Y, et al. The effect of SPTLC2 on promoting neuronal apoptosis is alleviated by MiR-124-3p through TLR4 signalling pathway[J]. Neurochem Res, 2019, 44(9): 2113-2122. doi: 10.1007/s11064-019-02849-7 [35] GAO J, CHEN N, LI N, et al. Neuroprotective effects of trilobatin, a novel naturally occurring Sirt3 agonist from lithocarpus polystachyus rehd, mitigate cerebral ischemia/reperfusion injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 signaling[J]. Antioxid Redox Signal, 2020, 33(2): 117-143. doi: 10.1089/ars.2019.7825 [36] REKUVIENE E, IVANOVIENE L, BORUTAITE V, et al. Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains[J]. Neuroence Letters, 2017, 653: 45-50. doi: 10.1016/j.neulet.2017.05.028 [37] LIU D, WANG H, ZHANG Y, et al. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway[J]. Drug Des Devel Ther, 2020, 14: 51-60. doi: 10.2147/DDDT.S228751 [38] HZFEZ H A, KAMEL M A, OSMAN M Y, et al. Ameliorative effects of astaxanthin on brain tissues of Alzheimer's disease-like model: Cross talk between neuronal-specific microRNA-124 and related pathways[J]. Mol Cell Biochem, 2021, 476(5): 2233-2249. doi: 10.1007/s11010-021-04079-4 [39] HIGUCHI F, UCHIDA S, YAMAGATA H, et al. Hippocampal microRNA-124 enhances chronic stress resilience in mice[J]. J Neurosci, 2016, 36(27): 7253-7267. doi: 10.1523/JNEUROSCI.0319-16.2016 [40] LIU H, WU X, LUO J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β[J]. Exp Neurol, 2020, 329: 113302. DOI: 10.1016/j.expneurol.2020.113302. [41] LI Y, SUN J, GU L, et al. Protective effect of CTRP6 on cerebral ischemia/reperfusion injury by attenuating inflammation, oxidative stress and apoptosis in PC12 cells[J]. Mol Med Rep, 2020, 22(1): 344-352. doi: 10.3892/mmr.2020.11108 [42] ZHU H, WANG J, SHAO Y, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[J]. Ann Transl Med, 2019, 7(14): 306. doi: 10.21037/atm.2019.06.25 [43] CHIDAMBARAM S B, RATHIPRIYA A G, BOLLA S R, et al. Dendritic spines: revisiting the physiological role[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92: 161-193. doi: 10.1016/j.pnpbp.2019.01.005 [44] GHAHFARROKHI A M, JAMI M S, CHALESHTORI M H. Upregulation of neuroprogenitor and neural markers via enforced miR-124 and growth factor treatment[J]. Int J Mol Cell Med, 2020, 9(1): 62-70. [45] CHEN S H, SUN H, ZHANG Y M, et al. Effects of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on peripheral serum expression of MicroRNA 124, laminin and integrin β1 in rats with cerebral ischemia reperfusion injury[J]. Chin J Integr Med, 2016, 22(1): 49-55. doi: 10.1007/s11655-015-2112-7 [46] MOKABBER H, NAJAFZADEH N, MOHAMMADZADEH VARDIN M. MiR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9[J]. J Cell Physiol, 2019, 234(6): 8941-8950. doi: 10.1002/jcp.27563 [47] SARAIVA C, TALHADA D, RAI A, et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo[J]. PLoS One, 2018, 13(3): e0193609. DOI: 10.1371/journal.pone.0193609. [48] YU Y L, CHOU R H, SHYU W C, et al. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke[J]. EMBO Mol Med, 2013, 5(4): 531-547. doi: 10.1002/emmm.201201783 [49] DOEPPNER T R, KALTWASSER B, SANCHEZMENDOZA E H, et al. Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways[J]. J Cereb Blood Flow Metab, 2017, 37(3): 914-926. doi: 10.1177/0271678X16647738 [50] PONOMAREV E D, VEREMEYKO T, WEINER H L. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS[J]. Glia, 2013, 61(1): 91-103. doi: 10.1002/glia.22363 [51] ZHAO J J, ZANG Y H, LIU Y, et al. Interaction between miRNA-155 targeting neuronal pacemaker ion channels and release of amino acid transmitters during cerebral ischemia[J]. Eur Rev Med Pharmacol Sci, 2021, 25(7): 3007-3014. [52] MONTES DE OCA BALDERAS P. Flux-Independent NMDAR signaling: Molecular mediators, cellular functions, and complexities[J]. Int J Mol Sci, 2018, 19(12): 3800. DOI: 10.3390/ijms19123800. [53] HELLSTEN S V, HAGGLUND M G, ERIKSSON M M, et al. The neuronal and astrocytic protein SL C38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission[J]. FEBS Open Bio, 2017, 7(6): 730-746. doi: 10.1002/2211-5463.12219 [54] THORN S R, FISHER D, ZHANG J, et al. Neuronal nitric oxide synthase and N-methyl-D-aspartate neurons in experimental carbon monoxide poisoning[J]. Toxicol Appl Pharmacal, 2014, 194(3): 280-295. [55] HUANG W Y, JIANG C, YE H B, et al. MiR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke[J]. Brain Res Bull, 2019, 149: 231-239. doi: 10.1016/j.brainresbull.2019.04.013 [56] SERPE C, MONACO L, RELUCENTI M, et al. Microglia-derived small extracellular vesicles reduce glioma growth by modifying tumor cell metabolism and enhancing glutamate clearance through miR-124[J]. Cells, 2021, 10(8): 2066. DOI: 10.3390/cells10082066. [57] PATEL D C, TEWARI B P, CHAUNSALI L, et al. Neuron-glia interactions in the pathophysiology of epilepsy[J]. Nat Rev Neurosci, 2019, 20(5): 282-297. doi: 10.1038/s41583-019-0126-4 [58] MAJDI A, MAHMOUDI J, SADIGH-ETEGHAD S, et al. The interplay of microRNAs and post-ischemic glutamate exci-totoxicity: an emergent research field in stroke medicine[J]. Neurol Sci, 2016, 37(11): 1765-1771. doi: 10.1007/s10072-016-2643-5 [59] ZOU R, WU Z, CUI S. Electroacupuncture pretreatment attenuates blood-brain barrier disruption following cerebral ischemia/reperfusion[J]. Mol Med Rep, 2015, 12(2): 2027-2034. doi: 10.3892/mmr.2015.3672 [60] 王宝祥, 许俊杰, 陆霞, 等. SHH信号通路对大脑中动脉梗死模型大鼠脑缺血后的保护作用[J]. 中华全科医学, 2020, 18(7): 1112-1114, 1160. doi: 10.16766/j.cnki.issn.1674-4152.001441WANG B X, XYU J J, LU X, et al. Protective effect of SHH signaling pathway on middle cerebral artery occlusion model rats after cerebral ischemia[J]. Chinese Journal of General Practice, 2020, 18(7): 1112-1114, 1160. doi: 10.16766/j.cnki.issn.1674-4152.001441 [61] LI Y, CHEN Y, LI J, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy[J]. Cancer Sci, 2017, 108(7): 1493-1503. doi: 10.1111/cas.13267 -

计量
- 文章访问数: 407
- HTML全文浏览量: 396
- PDF下载量: 21
- 被引次数: 0