Volume 23 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
LI Yan, ZHANG Yuxia, SHAN Haiyan. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833
Citation: LI Yan, ZHANG Yuxia, SHAN Haiyan. Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization[J]. Chinese Journal of General Practice, 2025, 23(1): 50-54. doi: 10.16766/j.cnki.issn.1674-4152.003833

Causal relationship between fasting plasma glucose and coronary heart disease based on two-sample mendelian randomization

doi: 10.16766/j.cnki.issn.1674-4152.003833
Funds:

 JCZR2020003

 21-173-9-44

  • Received Date: 2024-01-21
    Available Online: 2025-02-13
  •   Objective  Using two-sample mendelian randomization analysis to investigate the causal relationship between fasting plasma glucose and coronary heart disease, and to provide a basis for clinical prevention and treatment of coronary heart disease.  Methods  The causal relationship between fasting plasma glucose and coronary heart disease was analyzed using a two-sample Mendelian randomization approach with stringent selection criteria (P < 5×10-8, a distance of 10 000 kb, and r2 < 0.001). To identify instrumental variables closely associated with coronary heart disease and fasting plasma glucose in a European ancestry genome-wide association studies (GWAS) dataset, we extracted SNPs. This analysis included 200 622 fasting plasma glucose samples and 12 171 coronary heart disease cases with 450 839 controls. To validate the results, a repeated Mendelian randomization analysis was conducted using GWAS data from other datasets (fasting plasma glucose: n=24 679; coronary heart disease: 43 518 cases, and 333 759 controls). The primary analytical method used was the inverse variance-weighted method (IVW), and sensitivity analyses were performed to assess the robustness of the Mendelian randomization results.  Results  The IVW analysis strongly supports that higher fasting plasma glucose levels increase the risk of coronary heart disease (OR=1.007, 95% CI: 1.002-1.013, P=0.010). Similar trends were observed in the repeated analyses (OR=1.202, 95% CI: 1.086-1.329, P < 0.001). Sensitivity analyses further reinforce the robustness of the Mendelian randomization estimates.  Conclusion  Mendelian randomization analysis in the European population indicates a causal relationship between fasting plasma glucose and increased coronary heart disease risk. Clinically managing fasting plasma glucose levels within reason may be beneficial in preventing coronary heart disease and its related complications.

     

  • loading
  • [1]
    SHAYA G E, LEUCKER T M, JONES S R, et al. Coronary heart disease risk: low-density lipoprotein and beyond[J]. Trends Cardiovasc Med, 2022, 32(4): 181-194. doi: 10.1016/j.tcm.2021.04.002
    [2]
    GUTIÉRREZ-CUEVAS J, SANTOS A, ARMENDARIZ-BORUNDA J. Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases[J]. Int J Mol Sci, 2021, 22(21): 11629. DOI: 10.3390/ijms222111629.
    [3]
    KASE N G, GRETZ FRIEDMAN E, BRODMAN M, et al. The midlife transition and the risk of cardiovascular disease and cancer part Ⅰ: magnitude and mechanisms[J]. Am J Obstet Gynecol, 2020, 223(6): 820-833. doi: 10.1016/j.ajog.2020.05.051
    [4]
    杨玲, 杜雪平. 社区规范管理的稳定性冠心病患者生活质量研究[J]. 中华全科医学, 2023, 21(11): 1898-1902.

    YANG L, DU X P. Research on the quality of life in patients with stable coronary artery disease under standardized management in community[J]. Chinese Journal of General Practice, 2023, 21(11): 1898-1902.
    [5]
    HASBANI N R, LIGTHART S, BROWN M R, et al. American heart association ' s life ' s simple 7: lifestyle recommendations, polygenic risk, and lifetime risk of coronary heart disease[J]. Circulation, 2022, 145(11): 808-818. doi: 10.1161/CIRCULATIONAHA.121.053730
    [6]
    CAI X, XUE Z, ZENG F F, et al. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome[J]. Cell Rep Med, 2023, 4(9): 101172. DOI: 10.1016/j.xcrm.2023.101172.
    [7]
    SU W Y, CHEN S C, HUANG Y T, et al. Comparison of the effects of fasting glucose, hemoglobin A(1c), and triglyceride-glucose index on cardiovascular events in type 2 diabetes mellitus[J]. Nutrients, 2019, 11(11): 2838. DOI: 10.3390/nu11112838.
    [8]
    LIU X, WU S, SONG Q, et al. Reversion from pre-diabetes mellitus to normoglycemia and risk of cardiovascular disease and all-cause mortality in a chinese population: a prospective cohort study[J]. J Am Heart Assoc, 2021, 10(3): e019045. DOI: 10.1161/JAHA.120.019045.
    [9]
    JIN Y, XU Z, ZHANG Y, et al. Serum/plasma biomarkers and the progression of cardiometabolic multimorbidity: a systematic review and meta-analysis[J]. Front Public Health, 2023, 11: 1280185. DOI: 10.3389/fpubh.2023.1280185.
    [10]
    BOWDEN J, HOLMES M V. Meta-analysis and mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4): 486-496. doi: 10.1002/jrsm.1346
    [11]
    BIRNEY E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302.
    [12]
    WU Y, ZHANG C Y, LIU X, et al. Shared genetic architecture and causal relationship between sleep behaviors and lifespan[J]. Transl Psychiatry, 2024, 14(1): 108. DOI: 10.1038/s41398-024-02826-x.
    [13]
    HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome[J]. Elife, 2018, 7: e34408. DOI: 10.7554/eLife.34408.
    [14]
    CHEN J, SPRACKLEN C N, MARENNE G, et al. The trans-ancestral genomic architecture of glycemic traits[J]. Nat Genet, 2021, 53(6): 840-860. doi: 10.1038/s41588-021-00852-9
    [15]
    KETTUNEN J, DEMIRKAN A, WVRTZ P, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA[J]. Nat Commun, 2016, 7: 11122. DOI: 10.1038/ncomms11122.
    [16]
    KURKI M I, KARJALAINEN J, PALTA P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. doi: 10.1038/s41586-022-05473-8
    [17]
    LUO J, LE CESSIE S, VAN HEEMST D, et al. Diet-derived circulating antioxidants and risk of coronary heart disease: a mendelian randomization study[J]. J Am Coll Cardiol, 2021, 77(1): 45-54. doi: 10.1016/j.jacc.2020.10.048
    [18]
    MENG L, WANG Z, MING Y C, et al. Are micronutrient levels and supplements causally associated with the risk of Alzheimer ' s disease? A two-sample Mendelian randomization analysis[J]. Food Funct, 2022, 13(12): 6665-6673. doi: 10.1039/D1FO03574F
    [19]
    HE S, PENG Y, CHEN X, et al. Causality between inflammatory bowel disease and the cerebral cortex: insights from Mendelian randomization and integrated bioinformatics analysis[J]. Front Immunol, 2023, 14: 1175873. DOI: 10.3389/fimmu.2023.1175873.
    [20]
    WU Y, KONG X J, JI Y Y, et al. Serum electrolyte concentrations and risk of atrial fibrillation: an observational and mendelian randomization study[J]. BMC Genomics, 2024, 25(1): 280. DOI: 10.1186/s12864-024-10197-2.
    [21]
    QIN P, QIN T, LIANG L, et al. The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample mendelian randomization study[J]. Cardiovasc Diabetol, 2024, 23(1): 45. DOI: 10.1186/s12933-023-02074-1.
    [22]
    WENZL F A, AMBROSINI S, MOHAMMED S A, et al. Inflammation in metabolic cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 742178. DOI: 10.3389/fcvm.2021.742178.
    [23]
    王凯阳, 刘凤双, 刘永国, 等. 代谢综合征及各组分与急性心肌梗死患者冠状动脉病变程度及临床结局的相关性研究[J]. 中华全科医学, 2024, 22(2): 212-216, 239.

    WANG K Y, LIU F S, LIU Y G, et al. The correlation between metabolic syndrome and its components with the degree of coronary artery stenosis and clinical outcomes in patients with acute myocardial infarction[J]. Chinese Journal of General Practice, 2024, 22(2): 212-216, 239.
    [24]
    林小梅, 祖姆热提·阿布都克依木, 马春晖, 等. 血清白介素6、空腹血糖水平与冠心病及不良心血管事件关系的研究[J]. 中国全科医学, 2024, 27(3): 286-292.

    LIN X M, ZUMURETI A B D K Y M, MA C H, et al. Study on the correlation of serum interleukin-6 and fasting blood glucose with coronary heart disease and adverse cardiovascular events[J]. Chinese General Practice, 2024, 27(3): 286-292.
    [25]
    HOU X Z, LV Y F, LI Y S, et al. Association between different insulin resistance surrogates and all-cause mortality in patients with coronary heart disease and hypertension: NHANES longitudinal cohort study[J]. Cardiovasc Diabetol, 2024, 23(1): 86. DOI: 10.1186/s12933-024-02173-7.
    [26]
    MARZIANO C, GENET G, HIRSCHI K K. Vascular endothelial cell specification in health and disease[J]. Angiogenesis, 2021, 24(2): 213-236. doi: 10.1007/s10456-021-09785-7
    [27]
    BAI B, YANG Y, WANG Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9): 776. DOI: 10.1038/s41419-020-02985-x.
    [28]
    蔡宇豪, 惠波, 宋小龙, 等. 血管内皮生长因子基因多态性与冠心病患者冠状动脉多支病变的相关性研究[J]. 实用心脑肺血管病杂志, 2024, 32(2): 43-47.

    CAI Y H, HUI B, SONG X L, et al. Correlation between Vascular Endothelial Growth Factor Gene Polymorphism and Coronary Multi-vessel Disease in Patients with Coronary Heart Disease[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2024, 32(2): 43-47.
    [29]
    KLEIN K R, FRANEK E, MARSO S, et al. Hemoglobin glycation index, calculated from a single fasting glucose value, as a prediction tool for severe hypoglycemia and major adverse cardiovascular events in DEVOTE[J]. BMJ Open Diabetes Res Care, 2021, 9(2): e002339. DOI: 10.1136/bmjdrc-2021-002339.
    [30]
    HE Y, LI Z, YU L, et al. Association between the atherogenic index of plasma and carotid artery plaques in patients with coronary heart disease in different glucose metabolism states: an RCSCD-TCM study in Tianjin, China[J]. Endocrine, 2023, 81(2): 252-261. doi: 10.1007/s12020-023-03389-5
    [31]
    VERHEUGT F W A, TEN BERG J M, STOREY R F, et al. Antithrombotics: from aspirin to DOACs in coronary artery disease and atrial fibrillation (Part 3/5)[J]. J Am Coll Cardiol, 2019, 74(5): 699-711. doi: 10.1016/j.jacc.2019.02.080
    [32]
    RAI A K, LEE B, GOMEZ R, et al. Current status and potential therapeutic strategies for using non-coding rna to treat diabetic cardiomyopathy[J]. Front Physiol, 2020, 11: 612722. DOI: 10.3389/fphys.2020.612722.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (124) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return