Citation: | CHU Yiran, XU Shengqian. Research progress of alternative splicing in autoimmune diseases[J]. Chinese Journal of General Practice, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086 |
[1] |
WILKINSON M E, CHARENTON C, NAGAI K. RNA splicing by the spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388. doi: 10.1146/annurev-biochem-091719-064225
|
[2] |
WAN R X, BAI R, ZHAN X C, et al. How is precursor messenger RNA spliced by the spliceosome?[J]. Annu Rev Biochem, 2020, 89: 333-358. doi: 10.1146/annurev-biochem-013118-111024
|
[3] |
HASELBACH D, KOMAROV I, AGAFONOV D E, et al. Structure and conformational dynamics of the human spliceosomal Bact complex[J]. Cell, 2018, 172(3): 454-464.e11. DOI: 10.1016/j.cell.2018.01.010.
|
[4] |
JORDAN P, GONÇALVES V, FERNANDES S, et al. Networks of mRNA processing and alternative splicing regulation in health and disease[J]. Adv Exp Med Biol, 2019, 1157: 1-27.
|
[5] |
VANICHKINA D P, SCHMITZ U, WONG J J, et al. Challenges in defining the role of intron retention in normal biology and disease[J]. Semin Cell Dev Biol, 2018, 75: 40-49. doi: 10.1016/j.semcdb.2017.07.030
|
[6] |
RADENS C M, BLAKE D, JEWELL P, et al. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing[J]. RNA, 2020, 26(10): 1320-1333. doi: 10.1261/rna.075929.120
|
[7] |
WEST K O, SCOTT H M, TORRES-ODIO S, et al. The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages[J]. Cell Rep, 2019, 29(6): 1594-1609.e5. DOI: 10.1016/j.celrep.2019.09.078.
|
[8] |
JANSSEN W J, DANHORN T, HARRIS C, et al. Inflammation-induced alternative pre-mRNA splicing in mouse alveolar macrophages[J]. G3(Bethesda), 2020, 10(2): 555-567.
|
[9] |
LIU H F, LORENZINI P A, ZHANG F, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator[J]. Nucleic Acids Res, 2018, 46(12): 6069-6086. doi: 10.1093/nar/gky401
|
[10] |
SINGH I, LEE S H, SPERLING A S, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes[J]. Nat Commun, 2018, 9(1): 1716. doi: 10.1038/s41467-018-04112-z
|
[11] |
COURTNEY A H, SHVETS A A, LU W, et al. CD45 functions as a signaling gatekeeper in T cells[J]. Sci Signal, 2019, 12(604): eaaw8151. DOI: 10.1126/scisignal.aaw8151.
|
[12] |
BUCHBINDER J H, PISCHEL D, SUNDMACHER K, et al. Quantitative single cell analysis uncovers the life/death decision in CD95 network[J]. PLoS Comput Biol, 2018, 14(9): e1006368. DOI: 10.1371/journal.pcbi.1006368.
|
[13] |
KIST M, VUCIC D. Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40(5): e106700. DOI: 10.15252/embj.2020106700.
|
[14] |
KURMA K, BOIZARD-MORACCHINI A, GALLI G, et al. Soluble CD95L in cancers and chronic inflammatory disorders, a new therapeutic target?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188596. DOI: 10.1016/j.bbcan.2021.188596.
|
[15] |
VILYS L, PECIULIENE I, JAKUBAUSKIENE E, et al. U2AF-Hypoxia-induced fas alternative splicing regulator[J]. Exp Cell Res, 2021, 399(1): 112444. DOI: 10.1016/j.yexcr.2020.112444.
|
[16] |
JANG H N, LIU Y, CHOI N, et al. Binding of SRSF4 to a novel enhancer modulates splicing of exon 6 of fas pre-mRNA[J]. Biochem Biophys Res Commun, 2018, 506(3): 703-708. doi: 10.1016/j.bbrc.2018.10.123
|
[17] |
PECIULIENE I, VILYS L, JAKUBAUSKIENE E, et al. Hypoxia alters splicing of the cancer associated fas gene[J]. Exp Cell Res, 2019, 380(1): 29-35. doi: 10.1016/j.yexcr.2019.04.015
|
[18] |
BEN-MUSTAPHA I, AGREBI N, BARBOUCHE M R. Novel insights into FAS defects underlying autoimmune lymphoproliferative syndrome revealed by studies in consanguineous patients[J]. J Leukoc Biol, 2018, 103(3): 501-508. doi: 10.1002/JLB.5MR0817-332R
|
[19] |
GUÉGAN J P, LEGEMBRE P. Nonapoptotic functions of Fas/CD95 in the immune response[J]. FEBS J, 2018, 285(5): 809-827. doi: 10.1111/febs.14292
|
[20] |
VINCENT F B, KANDANE-RATHNAYAKE R, KOELMEYER R, et al. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus[J]. Lupus Sci Med, 2020, 7(1): e000375. DOI: 10.1136/lupus-2019-000375.
|
[21] |
STEVENS M, OLTEAN S. Modulation of the apoptosis gene Bcl-x function through alternative splicing[J]. Front Genet, 2019, 10: 804. doi: 10.3389/fgene.2019.00804
|
[22] |
MURAD F, GARCIA-SAEZ A J. Bcl-xL inhibits tBid and Bax via distinct mechanisms[J]. Faraday Discuss, 2021, 232(0): 86-102. DOI: 10.1039/d0fd00045k.
|
[23] |
YU S, DU M Y, YIN A, et al. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation[J]. Int J Biochem Cell Biol, 2020, 122: 105720. DOI: 10.1016/j.biocel.2020.105720.
|
[24] |
宋梦婷, 王振杰, 郭培霞, 等. 老年起病类风湿关节炎的诊治进展[J]. 中华全科医学, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
SONG M T, WANG Z J, GUO P X, et al. Advances in the diagnosis and treatment of rheumatoid arthritis in elderly patients[J]. Chinese Journal of General Practice, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
|
[25] |
WING J B, TANAKA A, SAKAGUCHI S. Human FOXP3+ regulatory T Cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. doi: 10.1016/j.immuni.2019.01.020
|
[26] |
SUN X H, XIAO Y F, ZENG Z T, et al. All-Trans retinoic acid induces CD4+CD25+FOXP3+ regulatory T cells by increasing FOXP3 demethylation in systemic sclerosis CD4+ T cells[J]. J Immunol Res, 2018, 2018: 8658156. DOI: 10.1155/2018/8658156.
|
[27] |
MAILER R K W. Alternative splicing of FOXP3-virtue and vice[J]. Front Immunol, 2018, 9: 530. doi: 10.3389/fimmu.2018.00530
|
[28] |
RYDER L R, BARTELS E M, WOETMANN A, et al. FOXP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis[J]. APMIS, 2012, 120(5): 387-396. doi: 10.1111/j.1600-0463.2011.02848.x
|
[29] |
MISHRA M N, CHANDAVARKAR V, SHARMA R, et al. Structure, function and role of CD44 in neoplasia[J]. J Oral Maxillofac Pathol, 2019, 23(2): 267-272. doi: 10.4103/jomfp.JOMFP_246_18
|
[30] |
CHEN C, ZHAO S J, KARNAD A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
|
[31] |
GRISAR J, MUNK M, STEINER C W, et al. Expression patterns of CD44 and CD44 splice variants in patients with rheumatoid arthritis[J]. Clin Exp Rheumatol, 2012, 30(1): 64-72.
|
[32] |
KATSUYAMA T, TSOKOS G C, MOULTON V R. Aberrant T cell signaling and subsets in systemic lupus erythematosus[J]. Front Immunol, 2018, 9: 1088. doi: 10.3389/fimmu.2018.01088
|
[33] |
XIAO F, CHEN L B. Effects of extracorporeal fucosylation of CD44 on the homing ability of rabbit bone marrow mesenchymal stem cells[J]. J Orthop Sci, 2019, 24(4): 725-730. doi: 10.1016/j.jos.2018.11.010
|
[34] |
LATINI A, NOVELLI L, CECCARELLI F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients[J]. Lupus, 2021, 30(7): 1086-1093. doi: 10.1177/09612033211004725
|
[35] |
BAARS M J D, DOUMA T, SIMEONOV D R, et al. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity[J]. Eur J Immunol, 2021, 51(2): 471-482. doi: 10.1002/eji.201948451
|
[36] |
MAO H W, YANG W L, LATOUR S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease[J]. J Allergy Clin Immunol, 2018, 142(2): 595-604.e16. DOI: 10.1016/j.jaci.2017.10.026.
|
[37] |
KONO M, KURITA T, YASUDA S, et al. Decreased expression of serine/arginine-rich splicing factor 1 in t cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA methyltransferase 1[J]. Arthritis Rheumatol, 2018, 70(12): 2046-2056. doi: 10.1002/art.40585
|