Citation: | LI De-min, LU Yong-zheng, QIN Zhen, XU Yan-yan, ZHANG Li, ZHANG Jin-ying, TANG Jun-nan. Cell derivatives in heart injury repair progress and application prospects[J]. Chinese Journal of General Practice, 2022, 20(3): 464-467. doi: 10.16766/j.cnki.issn.1674-4152.002379 |
[1] |
BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics-2019 update: A report from the american heart association[J]. Circulation, 2019, 139(10): e56-e528.
|
[2] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35(9): 833-854. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm
The Writing Committee of the Report on Cardiovascular Health and Diseases. Report on cardiovascular health and diseases in China 2019: An updated summary[J]. Chinese Circulation Journal, 2020, 35(9): 833-854 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm
|
[3] |
GULATI R, BEHFAR A, NARULA J, et al. Acute myocardial infarction in young individuals[J]. Mayo Clin Proc, 2020, 95(1): 136-156. doi: 10.1016/j.mayocp.2019.05.001
|
[4] |
PEET C, IVETIC A, BROMAGE D I, et al. Cardiac monocytes and macrophages after myocardial infarction[J]. Cardiovasc Res, 2020, 116(6): 1101-1112. doi: 10.1093/cvr/cvz336
|
[5] |
YU Y, LIU H, YANG D, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression[J]. Pharmacol Res, 2019, 146(1): 104315.
|
[6] |
CHEN P, WANG L, FAN X, et al. Targeted delivery of extracellular vesicles in heart injury[J]. Theranostics, 2021, 11(5): 2263-2277. doi: 10.7150/thno.51571
|
[7] |
YANG Y, LI Y, CHEN X, et al. Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia[J]. J Mol Med(Berl), 2016, 94(6): 711-724.
|
[8] |
YU X, DENG L, WANG D, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: Initiated by hypoxia inducible factor 1α, presented by exosomes[J]. J Mol Cell Cardiol, 2012, 53(6): 848-857. doi: 10.1016/j.yjmcc.2012.10.002
|
[9] |
WU T, LENG Q, TIAN L. The microRNA-210/Casp8ap2 axis alleviates hypoxia-Induced myocardial injury by regulating apoptosis and autophagy[J]. Cytogenet Genome Res, 2021, 161(3-4): 132-142. doi: 10.1159/000512254
|
[10] |
BOULANGER C M, LOYER X, RAUTOU P, et al. Extracellular vesicles in coronary artery disease[J]. Nat Rev Cardiol, 2017, 14(5): 259-272. doi: 10.1038/nrcardio.2017.7
|
[11] |
ZHU J, YAO K, GUO J, et al. miR-181a and miR-150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1-STAT1/c-Fos pathway[J]. J Cell Mol Med, 2017, 21(11): 2884-2895. doi: 10.1111/jcmm.13201
|
[12] |
XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3): 1046-1058. doi: 10.7150/thno.53326
|
[13] |
MUSHTAQ I, ISHTIAQ A, ALI T, et al. An overview of non-coding RNAs and cardiovascular system[J]. Adv Exp Med Biol, 2020, 1229: 3-45.
|
[14] |
ZHOU S, JIN J, WANG J, et al. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges[J]. Acta Pharmacol Sin, 2018, 39(7): 1073-1084. doi: 10.1038/aps.2018.30
|
[15] |
LIU X, TONG Z, CHEN K, et al. The role of miRNA-132 against apoptosis and oxidative stress in heart failure[J]. Biomed Res Int, 2018: 3452748. DOI: 10.1155/2018/3452748.
|
[16] |
GUO Y, LUO F, LIU Q, et al. Regulatory non-coding RNAs in acute myocardial infarction[J]. J Cell Mol Med, 2017, 21(5): 1013-1023. doi: 10.1111/jcmm.13032
|
[17] |
LI M, WANG Y F, YANG X C, et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction[J]. Med Sci Monit, 2018, 24: 5064-5070. doi: 10.12659/MSM.909348
|
[18] |
LI L, CONG Y, GAO X, et al. Differential expression profiles of long non-coding RNAs as potential biomarkers for the early diagnosis of acute myocardial infarction[J]. Oncotarget, 2017, 8(51): 88613-88621. doi: 10.18632/oncotarget.20101
|
[19] |
GARIKIPATI V, VERMA S K, CHENG Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10(1): 4317. doi: 10.1038/s41467-019-11777-7
|
[20] |
ZOU J, FEI Q, XIAO H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy[J]. J Cell Physiol, 2019, 234(10): 17690-17703. doi: 10.1002/jcp.28395
|
[21] |
NIU J, HAN X, QI H, et al. Correlation between vascular endothelial growth factor and long-term prognosis in patients with acute myocardial infarction[J]. Exp Ther Med, 2016, 12(1): 475-479. doi: 10.3892/etm.2016.3286
|
[22] |
REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
|
[23] |
THORSEN I S, GORANSSON L G, UELAND T, et al. The relationship between fibroblast growth factor 23 (FGF23) and cardiac MRI findings following primary PCI in patients with acute first time STEMI[J]. Int J Cardiol Heart Vasc, 2021, 33: 100727.
|
[24] |
SAHOO S, ADAMIAK M, MATHIYALAGAN P, et al. Therapeutic and diagnostic translation of extracellular vesicles in cardiovascular diseases roadmap to the clinic[J]. Circulation, 2021, 143(14): 1426-1449. doi: 10.1161/CIRCULATIONAHA.120.049254
|
[25] |
LIAO H, MENG L, YU X, et al. Increased circulating erythrocyte-derived microparticles in patients with acute coronary syndromes[J]. Biomark Med, 2021, 15(10): 741-751. doi: 10.2217/bmm-2021-0141
|
[26] |
EMANUELI C, SHEARN A I, LAFTAH A, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: An example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery[J]. PLoS One, 2016, 11(4): e154274.
|
[27] |
DEDDENS J C, VRIJSEN K R, COLIJN J M, et al. Circulating extracellular vesicles contain miRNAs and are released as early biomarkers for cardiac Injury[J]. J Cardiovasc Transl Res, 2016, 9(4): 291-301. doi: 10.1007/s12265-016-9705-1
|
[28] |
李竹英, 王婷, 李寒梅. 外泌体在支气管哮喘发病机制中的作用[J]. 中华全科医学, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228
LI Z Y, WANG T, LI H M. The role of exosomes in the pathogenesis of bronchial asthma[J]. Chinese Journal of General Practice, 2020, 18(2): 291-294. doi: 10.16766/j.cnki.issn.1674-4152.001228
|
[29] |
LEE B, KANG I, YU K. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes[J]. J Clin Med, 2021, 10(4): 711. doi: 10.3390/jcm10040711
|
[30] |
NORONHA N C, MIZUKAMI A, CALIARI-OLIVEIRA C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies[J]. Stem Cell Res Ther, 2019, 10(1): 131. doi: 10.1186/s13287-019-1224-y
|
[31] |
SUZUKI E, FUJITA D, TAKAHASHI M, et al. Therapeutic effects of mesenchymal stem cell-derived exosomes in cardiovascular disease[J]. Adv Exp Med Biol, 2017, 998: 179-185.
|
[32] |
CHEN G, WANG M, RUAN Z, et al. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy[J]. Life Sci, 2021, 280: 119742. doi: 10.1016/j.lfs.2021.119742
|
[33] |
GOLLMANN-TEPEKÖYLVC, PÖLZL L, GRABER M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy[J]. Cardiovasc Res, 2020, 116(6): 1226-1236. doi: 10.1093/cvr/cvz209
|
[34] |
LUTHER K M, HAAR L, MCGUINNESS M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119: 125-137. doi: 10.1016/j.yjmcc.2018.04.012
|
[35] |
DE ABREU R C, FERNANDES H, DA C M P, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics[J]. Nat Rev Cardiol, 2020, 17(11): 685-697. doi: 10.1038/s41569-020-0389-5
|
[36] |
PEZZANA C, AGNELY F, BOCHOT A, et al. Extracellular vesicles and biomaterial design: New therapies for cardiac repair[J]. Trends Mol Med, 2021, 27(3): 231-247. doi: 10.1016/j.molmed.2020.10.006
|
[37] |
LV K, LI Q, ZHANG L, et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction[J]. Theranostics, 2019, 9(24): 7403-7416. doi: 10.7150/thno.32637
|
[38] |
LIU B, LEE B W, NAKANISHI K, et al. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells[J]. Nat Biomed Eng, 2018, 2(5): 293-303. doi: 10.1038/s41551-018-0229-7
|
[39] |
MEHRYAB F, RABBANI S, SHAHHOSSEINI S, et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomater, 2020, 113: 42-62. doi: 10.1016/j.actbio.2020.06.036
|
[40] |
WIKLANDER O, BRENNAN M Á, LÖTVALL J, et al. Advances in therapeutic applications of extracellular vesicles[J]. Sci Transl Med, 2019, 11(492): eaav8521. doi: 10.1126/scitranslmed.aav8521
|
[41] |
WANG K J, ZHAO X, LIU Y Z, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel biomarkers for early diagnosis of acute myocardial infarction[J]. Cell Physiol Biochem, 2016, 38(3): 1015-1029. doi: 10.1159/000443053
|
[42] |
FANG Y, XU Y, WANG R, et al. Recent advances on the roles of lncRNAs in cardiovascular disease[J]. J Cell Mol Med, 2020, 24(21): 12246-12257. doi: 10.1111/jcmm.15880
|
[43] |
VAUSORT M, SALGADO-SOMOZA A, ZHANG L, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction[J]. J Am Coll Cardiol, 2016, 68(11): 1247-1248. doi: 10.1016/j.jacc.2016.06.040
|
[44] |
KHOSRAVI F, AHMADVAND N, BELLUSCI S, et al. The multifunctional contribution of FGF signaling to cardiac development, homeostasis, disease and repair[J]. Front Cell Dev Biol, 2021, 9: 672935. doi: 10.3389/fcell.2021.672935
|
[45] |
REN Z, XIAO W, ZENG Y, et al. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux[J]. Int J Mol Med, 2019, 43(3): 1321-1330.
|
[46] |
ITOH N, OHTA H, NAKAYAMA Y, et al. Roles of FGF signals in heart development, health, and disease[J]. Front Cell Dev Biol, 2016, 4(30): 110.
|