Citation: | WANG Chao, MEI Zhi-jie, CAO Zhen-xue, LIANG Yu-jie, CHEN Meng-jie, ZHANG Yong-qi, GUO Yuan-yuan, YANG Xiao-huai. Study on the inhibitory effects of miR-140-5p targeting YES1 proto-oncogene[J]. Chinese Journal of General Practice, 2021, 19(5): 731-735. doi: 10.16766/j.cnki.issn.1674-4152.001903 |
[1] |
GUPTA S, PUNGSRINONT T, ZENATA O, et al. Interleukin-23 represses the level of cell senescence induced by the androgen receptor antagonists enzalutamide and darolutamide in castration-resistant prostate cancer cells[J]. Horm Cancer, 2020, 11(3-4): 182-190. doi: 10.1007/s12672-020-00391-5
|
[2] |
MORRISON B F, AIKEN W D, MAYHEW R. Current state of prostate cancer treatment in Jamaica[J]. Ecancermedicalscience, 2014, 8: 456. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154943/pdf/can-8-456.pdf
|
[3] |
KIENER M, CHEN L P, KREBS M, et al. miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo[J]. BMC Cancer, 2019, 19(1): 627. doi: 10.1186/s12885-019-5819-6
|
[4] |
VILA-NAVARRO E, FERNANDEZ-CASTANER E, ROVIRA-RIGAU M, et al. MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics[J]. Oncogenesis, 2020, 9(5): 281-297. http://www.nature.com/articles/s41389-020-0227-y
|
[5] |
SUN X L, LI Y K, YU J, et al. miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1[J]. Jpn J Clin Oncol, 2015, 45(5): 474-482. doi: 10.1093/jjco/hyv027
|
[6] |
BASKERVILLE S, BARTEL D P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes[J]. RNA, 2005, 11(3): 241-247. doi: 10.1261/rna.7240905
|
[7] |
URBANEK-TRZECIAK M O, JAWORSKA E, KRZYZOSIAK W J. miRNAmotif-a tool for the prediction of pre-miRNA-protein interactions[J]. Int J Mol Sci, 2018, 19(12): 4075. doi: 10.3390/ijms19124075
|
[8] |
WEI L Z, WANG Y Q, CHANG Y L, et al. Imbalance of a KLF4-miR-7 auto-regulatory feedback loop promotes prostate cancer cell growth by impairing microRNA processing[J]. Am J Cancer Res, 2018, 8(2): 226-244. http://ajcr.us/files/ajcr0068245.pdf
|
[9] |
WEGERT J, ISHAQUE N, VARDAPOUR R, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors[J]. Cancer Cell, 2015, 27(2): 298-311. doi: 10.1016/j.ccell.2015.01.002
|
[10] |
BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. doi: 10.1016/j.cell.2009.01.002
|
[11] |
YU A, ZHANG J, MEI Y, et al. Correlation between single nucleotide polymorphisms of an miRNA binding site in the 3'UTR of PTEN and risk of cervical cancer among the Han Chinese[J]. Genet Test Mol Biomarkers, 2020, 24(7): 381-389. doi: 10.1089/gtmb.2019.0269
|
[12] |
YANG B, MCJUNKIN K. The mir-35-42 binding site in the nhl-2 3'UTR is dispensable for development and fecundity[J]. MicroPubl Biol, 2020. DOI: 10.17912/micropub.biology.000241.
|
[13] |
JONES D Z, SCHMIDT M L, SUMAN S, et al. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells[J]. BMC Cancer, 2018, 18(1): 421. doi: 10.1186/s12885-018-4258-0
|
[14] |
MORIDIKIA A, MIRZAEI H, SAHEBKAR A, et al. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer[J]. J Cell Physiol, 2018, 233(2): 901-913. doi: 10.1002/jcp.25801
|
[15] |
FAN H, ZHANG Y S. miR-490-3p modulates the progression of prostate cancer through regulating histone deacetylase 2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2): 539-546. http://www.researchgate.net/publication/331147580_MiR-490-3p_modulates_the_progression_of_prostate_cancer_through_regulating_histone_deacetylase_2
|
[16] |
BAI M H, LEI Y, WANG M C, et al. Long non-coding RNA SNHG17 promotes cell proliferation and invasion in castration-resistant prostate cancer by targeting the miR-144/CD51 axis[J]. Front Genet, 2020, 11: 274. doi: 10.3389/fgene.2020.00274
|
[17] |
GUPTA S, SILVEIRA D A, MOMBACH J C M. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation[J]. PLoS One, 2018, 13(7): e0200768. doi: 10.1371/journal.pone.0200768
|
[18] |
HAO S D, MA J X, LIU Y, et al. Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(2): 619-632. http://www.researchgate.net/publication/339067247_Long_non-coding_TUG1_accelerates_prostate_cancer_progression_through_regulating_miR-128-3pYES1_axis
|
[19] |
ELISI G M, SANTICCI M, DARCA D, et al. Repurposing of drugs targeting YAP-TEAD functions[J]. Cancers(Basel), 2018, 10(9): 329. http://www.mdpi.com/2072-6694/10/9/329/pdf
|
[20] |
HAMANAKA N, NAKANISHI Y, MIZUNO T, et al. YES1 is a targetable oncogene in cancers harboring YES1 gene amplification[J]. Cancer Res, 2019, 79(22): 5734-5745. doi: 10.1158/0008-5472.CAN-18-3376
|
[21] |
ROSENBLUH J, NIJHAWAN D, COX A G, et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis[J]. Cell, 2012, 151(7): 1457-1473. doi: 10.1016/j.cell.2012.11.026
|
[22] |
TAN W, LIM S G, TAN T M. Up-regulation of microRNA-210 inhibits proliferation of hepatocellular carcinoma cells by targeting YES1[J]. World J Gastroenterol, 2015, 21(46): 13030-13041. doi: 10.3748/wjg.v21.i46.13030
|
[23] |
ZHANG G, WANG J, ZHENG R, et al. MiR-133 targets YES1 and inhibits the growth of triple-negative breast cancer cells[J]. Technol Cancer Res Treat, 2020. DOI: 10.1177/1533033820927011
|
[24] |
YE P, LV X, AIZEMAITI R, et al. H3K27ac-activated LINC00519 promotes lung squamous cell carcinoma progression by targeting miR-450b-5p/miR-515-5p/YAP1 axis[J]. Cell Prolif, 2020, 53(5): e12797. doi: 10.1111/cpr.12797
|