留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血脑屏障中紧密连接蛋白-5在癫痫中的作用研究进展

陈静怡 高凡凯 薛国芳

陈静怡, 高凡凯, 薛国芳. 血脑屏障中紧密连接蛋白-5在癫痫中的作用研究进展[J]. 中华全科医学, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099
引用本文: 陈静怡, 高凡凯, 薛国芳. 血脑屏障中紧密连接蛋白-5在癫痫中的作用研究进展[J]. 中华全科医学, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099
CHEN Jingyi, GAO Fankai, XUE Guofang. Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier[J]. Chinese Journal of General Practice, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099
Citation: CHEN Jingyi, GAO Fankai, XUE Guofang. Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier[J]. Chinese Journal of General Practice, 2025, 23(7): 1209-1213. doi: 10.16766/j.cnki.issn.1674-4152.004099

血脑屏障中紧密连接蛋白-5在癫痫中的作用研究进展

doi: 10.16766/j.cnki.issn.1674-4152.004099
基金项目: 

山西省青年科技研究基金项目 202203021212056

详细信息
    通讯作者:

    薛国芳,E-mail:xueguofangty@163.com

  • 中图分类号: R742.1 R338

Advancements in the study of tight junction protein-5 in epilepsy within the blood-brain barrier

  • 摘要: 血脑屏障(BBB)由脑微血管内皮细胞构成,是一种重要的保护性屏障,能够限制血液中的有害物质进入大脑,维持脑组织稳定的内环境,其完整性对大脑功能至关重要。紧密连接蛋白是维持BBB结构和功能的关键成分,这些蛋白位于脑微血管内皮细胞之间,起到连接相邻细胞、保持屏障完整性的作用,构成一个高度调控的微环境。紧密连接蛋白-5(Claudin-5)是BBB中较为丰富的紧密连接蛋白之一,广泛分布于脑微血管内皮细胞的细胞膜上。有研究表明,Claudin-5在调控BBB的完整性和通透性方面起着至关重要的作用。它通过控制细胞之间的连接空隙,确保BBB的选择性和通透性,使得大脑能够得到所需的氧气、葡萄糖等物质,同时防止有害物质、病原体及其他潜在危害物质进入大脑。一旦Claudin-5的表达或功能发生异常,BBB的功能将受到影响, 从而引发一系列神经系统疾病,如神经炎症、脑血管疾病以及神经退行性疾病等。癫痫是一种由异常神经放电引起的疾病,部分研究表明Claudin-5可能通过改变BBB的通透性,影响脑组织内的离子浓度,进而参与癫痫的发病机制。尽管目前尚不完全清楚其具体机制,但Claudin-5的变化可能与癫痫的发生密切相关。综上,Claudin-5不仅在维持BBB的完整性方面起着至关重要的作用,也在中枢神经系统疾病,特别是癫痫的发病机制中具有潜在的研究价值。本文将综述Claudin-5的生理功能、病理变化以及在维持BBB完整性与癫痫中的作用,为癫痫疾病的治疗提供新的思路。

     

  • 图  1  血脑屏障结构及破坏示意图

    注:A为星形胶质细胞,B为神经元,C为基底膜,D为周细胞,E为紧密连接,F为内皮细胞,G为钾离子,H为白细胞。

    Figure  1.  Schematic diagram of the blood-brain barrier structure and its disruption

    图  2  Claudin结构示意图

    注:Claudin家族是存在于上皮和内皮间顶端的膜蛋白,作为四次跨膜蛋白家族,包含27个成员。有4个跨膜结构域,包括位于细胞质中的N端和C端,以及2个胞外结构域。A为细胞外环-1;B为细胞外环-2;C为NH2-端;D为COOH-端;E为细胞膜。

    Figure  2.  Schematic diagram of Claudin structure

  • [1] REISS Y, BAUER S, DAVID B, et al. The neurovasculature as a target in temporal lobe epilepsy[J]. Brain Pathol, 2023, 33(2): e13147. DOI: 10.1111/bpa.13147.
    [2] CHEN X, LUO J, SONG M, et al. Challenges and prospects in geriatric epilepsy treatment: the role of the blood-brain barrier in pharmacotherapy and drug delivery[J]. Front Aging Neurosci, 2024, 16: 1342366. DOI: 10.3389/fnagi.2024.1342366.
    [3] WU D, CHEN Q, CHEN X J, et al. The blood-brain barrier: structure, regulation, and drug delivery[J]. Signal Transduct Target Ther, 2023, 8(1): 217. DOI: 10.1038/s41392-023-01481-w.
    [4] CARSTENS G, VERBEEK M M, ROHLWINK U K, et al. Metabolite transport across central nervous system barriers[J]. J Cereb Blood Flow Metab, 2024, 44(7): 1063-1077. doi: 10.1177/0271678X241241908
    [5] 刘玉琴, 陈密, 唐兰燕, 等. 脑乳酸水平与肝性脑病的关系[J]. 临床肝胆病杂志, 2023, 39(7): 1728-1733.

    LIU Y Q, CHEN M, TANG L Y, et al. Research advances in brain lactate level and hepatic encephalopathy[J]. Journal of Clinical Hepatology, 2023, 39(7): 1728-1733.
    [6] DITHMER S, BLASIG I E, FRASER P A, et al. The basic requirement of tight junction proteins in blood-brain barrier function and their role in pathologies[J]. Int J Mol Sci, 2024, 25(11): 5601. DOI: 10.3390/ijms25115601.
    [7] CUDNA A, BRONISZ E, JOPOWICZ A, et al. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures[J]. Seizure, 2023, 106: 129-137. doi: 10.1016/j.seizure.2023.02.012
    [8] 王红坤, 龙妮娅. 左乙拉西坦联合拉莫三嗪治疗癫痫的疗效及其对血清炎症因子的影响[J]. 贵州医科大学学报, 2023, 48(8): 963-968.

    WANG H K, LONG N Y. Effect of levetiracetam combined with lamotrigine on electroencephalogram and inflammatory factors in epilepsy patients[J]. Journal of Guizhou Medical University, 2023, 48(8): 963-968.
    [9] 蒋瑞婷, 倪琦超, 王瑜佳, 等. 癫痫患者血清NSE水平及其与脑电图特征和复发风险的相关性[J]. 中华全科医学, 2024, 22(12): 2100-2103. doi: 10.16766/j.cnki.issn.1674-4152.003807

    JIANG R T, NI Q C, WANG Y J, et al. Serum NSE levels in epileptic patients and its correlation with EEG characteristics and recurrence risk[J]. Chinese Journal of General Practice, 2024, 22(12): 2100-2103. doi: 10.16766/j.cnki.issn.1674-4152.003807
    [10] BANKS W A, RHEA E M, REED M J, et al. The penetration of therapeutics across the blood-brain barrier: classic case studies and clinical implications[J]. Cell Rep Med, 2024, 5(11): 101760. DOI: 10.1016/j.xcrm.2024.101760.
    [11] 王钰宏, 罗凯旋, 李俊瑞, 等. 聚焦超声联合微泡开放血脑屏障对小鼠紧密连接蛋白的影响[J]. 中国康复医学杂志, 2023, 38(1): 8-15.

    WANG Y H, LUO K X, LI J R, et al. Effects of focused ultrasound combined with microbubbles to open the blood-brain barrier on tight junction proteins[J]. Chinese Journal of Rehabilitation Medicine, 2023, 38(1): 8-15.
    [12] CHEN P, WANG S D, ZHANG H M, et al. Recent advances in nanotherapy-based treatment of epilepsy[J]. Colloids Surf B Biointerfaces, 2025, 249: 114499. DOI: 10.1016/j.colsurfb.2025.114499.
    [13] CHEN F, DONG X, WANG Z H, et al. Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy[J]. Neural Regen Res, 2024, 19(2): 425-433. doi: 10.4103/1673-5374.379048
    [14] SATO R, OHMORI K, UMETSU M, et al. An Atlas of the quantitative protein expression of anti-epileptic-drug transporters, metabolizing enzymes and tight junctions at the blood-brain barrier in epileptic patients[J]. Pharmaceutics, 2021, 13(12): 2122. DOI: 10.3390/pharmaceutics13122122.
    [15] GUAN Z Y, LIU Q L, WANG Y H, et al. Relationship between tight junctions of the BBB and astrocyte connective function in epilepsy: albumin and astrocyte activation[J]. Medicine Plus, 2024, 1(3): 100047. DOI: 10.1016/j.medp.2024.100047.
    [16] GREENE C, HANLEY N, RESCHKE C R, et al. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity[J]. Nat Commun, 2022, 13: 2003. DOI: 10.1038/s41467-022-29657-y.
    [17] PFAU S J, LANGEN U H, FISHER T M, et al. Characteristics of blood-brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells[J]. Nat Neurosci, 2024, 27(10): 1892-1903. doi: 10.1038/s41593-024-01743-y
    [18] TREVISANI M, BERSELLI A, ALBERINI G, et al. A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro[J]. Sci Adv, 2025, 11(2): eadq2616. DOI: 10.1126/sciadv.adq2616.
    [19] GONSCHIOR H, SCHMIED C, VAN DER VEEN R E, et al. Nanoscale segregation of channel and barrier claudins enables paracellular ion flux[J]. Nat Commun, 2022, 13(1): 4985. DOI: 10.1038/s41467-022-32533-4.
    [20] GONZALES-ALOY E, AHMED-COX A, TSOLI M, et al. From cells to organoids: the evolution of blood-brain barrier technology for modelling drug delivery in brain cancer[J]. Adv Drug Deliv Rev, 2023, 196: 114777. DOI: 10.1016/j.addr.2023.114777.
    [21] 杨茗惠, 刘辉, 佟湃舸, 等. 星形胶质细胞在血脑屏障发育与稳态维持中的作用机制[J]. 生命科学, 2023, 35(12): 1669-1677.

    YANG M H, LIU H, TONG P G, et al. The role of astrocyte in development and maintenance of the blood brain barrier[J]. Chinese Bulletin of Life Sciences, 2023, 35(12): 1669-1677.
    [22] KIM H, LENG K, PARK J, et al. Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin[J]. Nat Commun, 2022, 13(1): 6581. DOI: 10.1038/s41467-022-34412-4.
    [23] GARCIA F J, SUN N, LEE H, et al. Single-cell dissection of the human brain vasculature[J]. Nature, 2022, 603(7903): 893-899. doi: 10.1038/s41586-022-04521-7
    [24] HARRY G J. Developmental associations between neurovascularization and microglia colonization[J]. Int J Mol Sci, 2024, 25(2): 1281. DOI: 10.3390/ijms25021281.
    [25] CHEN X Y, YAO N N, MAO Y G, et al. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions[J]. Neural Regen Res, 2024, 19(7): 1541. DOI: 10.4103/1673-5374.386398.
    [26] NI G X, KOU L L, DUAN C Q, et al. MicroRNA-199a-5p attenuates blood-brain barrier disruption following ischemic stroke by regulating PI3K/Akt signaling pathway[J]. PLoS One, 2024, 19(9): e0306793. DOI: 10.1371/journal.pone.0306793.
    [27] AGUILAR-CASTILLO M J, CABEZUDO-GARCÍA P, GARCÍA-MARTÍN G, et al. A systematic review of the predictive and diagnostic uses of neuroinflammation biomarkers for epileptogenesis[J]. Int J Mol Sci, 2024, 25(12): 6488. DOI: 10.3390/ijms25126488.
    [28] CELENTANO C, CAROTENUTO L, MICELI F, et al. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage[J]. Am J Physiol Cell Physiol, 2024, 326(3): C893-C904. doi: 10.1152/ajpcell.00709.2023
    [29] PRABHAKAR N K, KHAN H, GREWAL A K, et al. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches[J]. Int Immunopharmacol, 2022, 108: 108902. DOI: 10.1016/j.intimp.2022.108902.
    [30] RONALDSON P T, WILLIAMS E I, BETTERTON R D, et al. CNS drug delivery in stroke: improving therapeutic translation from the bench to the bedside[J]. Stroke, 2024, 55(1): 190-202. doi: 10.1161/STROKEAHA.123.043764
    [31] REISS Y, BAUER S, DAVID B, et al. The neurovasculature as a target in temporal lobe epilepsy[J]. Brain Pathol, 2023, 33(2): e13147. DOI: 10.1111/bpa.13147.
    [32] HASHIMOTO Y, GREENE C, MUNNICH A, et al. The CLDN5 gene at the blood-brain barrier in health and disease[J]. Fluids Barriers CNS, 2023, 20(1): 22. DOI: 10.1186/s12987-023-00424-5.
    [33] DITHMER S, BLASIG I E, FRASER P A, et al. The basic requirement of tight junction proteins in blood-brain barrier function and their role in pathologies[J]. Int J Mol Sci, 2024, 25(11): 5601. DOI: 10.1186/s12987-023-00424-5.
    [34] WAKAYAMA E, KUZU T, TACHIBANA K, et al. Modifying the blood-brain barrier by targeting claudin-5: safety and risks[J]. Ann N Y Acad Sci, 2022, 1514(1): 62-69. doi: 10.1111/nyas.14787
    [35] MEIJER W C, GORTER J A. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy[J]. Epilepsia, 2024, 65(9): 2519-2536. doi: 10.1111/epi.18072
    [36] 方彬宇, 朱婷, 张淑霞, 等. 三七皂苷抗缺血性脑卒中的分子机制研究进展[J]. 中华全科医学, 2022, 20(6): 1027-1030, 1048. doi: 10.16766/j.cnki.issn.1674-4152.002516

    FANG B Y, ZHU T, ZHANG S X, et al. Research progress on the molecular mechanism of panax notoginseng saponins against ischemic stroke[J]. Chinese Journal of General Practice, 2022, 20(6): 1027-1030, 1048. doi: 10.16766/j.cnki.issn.1674-4152.002516
    [37] KUMAR NELSON V, JHA N K, NULI M V, et al. Unveiling the impact of aging on BBB and Alzheimer's disease: factors and therapeutic implications[J]. Ageing Res Rev, 2024, 98: 102224. DOI: 10.1016/j.arr.2024.102224.
    [38] CHEN J X Y, VIPIN A, SANDHU G K, et al. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities[J]. J Prev Alzheimers Dis, 2025, 12(2): 100029. DOI: 10.1016/j.tjpad.2024.100029.
    [39] LAU K, KOTZUR R, RICHTER F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy[J]. Transl Neurodegener, 2024, 13(1): 37. DOI: 10.1186/s40035-024-00430-z.
  • 加载中
图(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-23
  • 网络出版日期:  2025-10-25

目录

    /

    返回文章
    返回