留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于免疫系统探讨酒精对骨质疏松症的作用机制

岳云祥 任洋洋 王刚 康伯源 徐西林

岳云祥, 任洋洋, 王刚, 康伯源, 徐西林. 基于免疫系统探讨酒精对骨质疏松症的作用机制[J]. 中华全科医学, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097
引用本文: 岳云祥, 任洋洋, 王刚, 康伯源, 徐西林. 基于免疫系统探讨酒精对骨质疏松症的作用机制[J]. 中华全科医学, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097
YUE Yunxiang, REN Yangyang, WANG Gang, KANG Boyuan, XU Xilin. Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system[J]. Chinese Journal of General Practice, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097
Citation: YUE Yunxiang, REN Yangyang, WANG Gang, KANG Boyuan, XU Xilin. Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system[J]. Chinese Journal of General Practice, 2025, 23(7): 1199-1203. doi: 10.16766/j.cnki.issn.1674-4152.004097

基于免疫系统探讨酒精对骨质疏松症的作用机制

doi: 10.16766/j.cnki.issn.1674-4152.004097
基金项目: 

国家自然科学基金项目 8237153419

国家中医药管理局青年岐黄学者支持项目 国中医药人教发〔2020〕7号

黑龙江省重点研发计划项目 GZ20210136

黑龙江省中医药科研项目 ZHY2023-099

详细信息
    通讯作者:

    徐西林,E-mail: eastoph@sina.com

  • 中图分类号: R68 R392

Exploring the mechanism of alcohol's effect on osteoporosis based on the immune system

  • 摘要: 骨质疏松症(osteoporosis, OP)是以骨强度下降以及骨折风险增加为特征的骨骼疾病,同时也是一种医学和社会经济威胁。酗酒行为在全球范围内普遍流行。由于特有的饮酒文化,我国酒精性疾病高发。长期酗酒可以通过直接影响成骨细胞、破骨细胞及其前体细胞,或通过间接影响蛋白质代谢、肝功能、内分泌等方式,导致骨代谢紊乱、骨量丢失及骨微观结构退化,进而引发骨质疏松症,但骨质疏松症的发病机制尚未完全阐明。免疫系统是一个由多种分子、细胞、组织和器官组成的复杂网络,也是维持人体生命的重要系统,旨在保护身体免受传染源和恶性细胞的侵害。近年来的研究表明,酒精与免疫系统有密切联系,特别是酒精对先天性免疫和适应性免疫的影响,以及免疫系统中许多免疫细胞如中性粒细胞、巨噬细胞、T细胞及B细胞与骨质疏松症的相关性。因此,本文从酒精对免疫系统的影响论述酒精对骨质疏松症的发病机制,旨在为骨质疏松症的机制研究、新药研发以及新的治疗策略提供思路和依据,并发现酒精通过干扰免疫细胞动态平衡(如抑制中性粒细胞、巨噬细胞、T和B淋巴细胞生成)及其相关信号通路活性(包括OPG/RANKL/RANK、JAK/STAT3、NF-κB及JNK通路),同时异常调控促炎因子(如IL-1、IL-6、IL-17、TNF-α和IFN-γ)的分泌,直接或间接破坏骨形成与骨吸收的稳态平衡,最终导致骨质疏松症的发生。

     

  • [1] 冯成桢, 李俊伟, 李琰华. 钙剂及维生素D治疗原发性骨质疏松症的有效性与安全性研究进展[J]. 中华全科医学, 2020, 18(4): 642-645. doi: 10.16766/j.cnki.issn.1674-4152.001319

    FENG C Z, LI J W, LI Y H. Progress in the efficacy and safety of calcium and vitamin D in the treatment of primary osteoporosis[J]. Chinese Journal of General Practice, 2020, 18(4): 642-645. doi: 10.16766/j.cnki.issn.1674-4152.001319
    [2] World Health Organization. Global status report on alcohol and health 2018[M]. Geneva: World Health Organization, 2018.
    [3] GÓMEZ NAVARRO R. Prevalence of risk factors for fragility fracture in men aged 40 to 90 years of a Spanish basic Rural Health Area[J]. Rev Esp Salud Publica, 2011, 85(5): 491-498. doi: 10.1590/S1135-57272011000500008
    [4] PACCOU J, EDWARDS M H, WARD K, et al. Relationships between bone geometry, volumetric bone mineral density and bone microarchitecture of the distal radius and tibia with alcohol consumption[J]. Bone, 2015, 78: 122-129. doi: 10.1016/j.bone.2015.05.002
    [5] RUIZ-CORTES K, VILLAGELIU D N, SAMUELSON D R. Innate lymphocytes: role in alcohol-induced immune dysfunction[J]. Front Immunol, 2022, 13: 934617. DOI: 10.3389/fimmu.2022.934617.
    [6] TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642. doi: 10.1038/s41577-019-0178-8
    [7] ZHANG W D, GAO R H, RONG X, et al. Immunoporosis: role of immune system in the pathophysiology of different types of osteoporosis[J]. Front Endocrinol, 2022, 13: 965258. DOI: 10.3389/fendo.2022.965258.
    [8] SAXENA Y, ROUTH S, MUKHOPADHAYA A. Immunoporosis: role of innate immune cells in osteoporosis[J]. Front Immunol, 2021, 12: 687037. DOI: 10.3389/fimmu.2021.687037.
    [9] SHI X, DELUCIA A L, BAO J X, et al. Alcohol abuse and disorder of granulopoiesis[J]. Pharmacol Ther, 2019, 198: 206-219. doi: 10.1016/j.pharmthera.2019.03.001
    [10] HERATH T D K, LARBI A, TEOH S H, et al. Neutrophil-mediated enhancement of angiogenesis and osteogenesis in a novel triple cell co-culture model with endothelial cells and osteoblasts[J]. Tissue Eng Regen Med, 2018, 12(2): e1221-e1236.
    [11] 王星月, 江蕾, 杨俊伟. 巨噬细胞能量代谢与肾脏疾病的研究进展[J]. 中华全科医学, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504

    WANG X Y, JIANG L, YANG J W. The role of metabolism in macrophage in Kidney diseases[J]. Chinese Journal of General Practice, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504
    [12] LOCATI M, CURTALE G, MANTOVANI A. Diversity, mechanisms and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
    [13] MALHERBE D C, MESSAOUDI I. Transcriptional and epigenetic regulation of monocyte and macrophage dysfunction by chronic alcohol consumption[J]. Front Immunol, 2022, 13: 911951. DOI: 10.3389/fimmu.2022.911951.
    [14] FENG D, HWANG S, GUILLOT A, et al. Inflammation in alcohol-associated hepatitis: pathogenesis and therapeutic targets[J]. Cell Mol Gastroenterol Hepatol, 2024, 18(3): 101352. DOI: 10.1016/j.jcmgh.2024.04.009.
    [15] KIM A, SAIKIA P, NAGY L E. miRNAs involved in M1/M2 hyperpolarization are clustered and coordinately expressed in alcoholic hepatitis[J]. Front Immunol, 2019, 10: 1295. DOI: 10.3389/fimmu.2019.01295.
    [16] SURESHCHANDRA S, RAIS M, STULL C, et al. Transcriptome profiling reveals disruption of innate immunity in chronic heavy ethanol consuming female rhesus macaques[J]. PLoS One, 2016, 11(7): e0159295. DOI: 10.1371/journal.pone.0159295.
    [17] 张明东, 路喆鑫, 顾红兵, 等. T细胞在主动脉瓣钙化中的研究进展[J]. 中华全科医学, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999

    ZHANG M D, LU Z X, GU H B, et al. Research progress on T cells in aortic valve calcification[J]. Chinese Journal of General Practice, 2023, 21(5): 853-856. doi: 10.16766/j.cnki.issn.1674-4152.002999
    [18] PASALA S, BARR T, MESSAOUDI I. Impact of alcohol abuse on the adaptive immune system[J]. Alcohol Res Curr Rev, 2015, 37(2): 185-197. doi: 10.35946/arcr.v37.2.04
    [19] PATERSON C W, GUTIERREZ M B, COOPERSMITH C M, et al. Impact of chronic alcohol exposure on conventional and regulatory murine T cell subsets[J]. Front Immunol, 2023, 14: 1142614. DOI: 10.3389/fimmu.2023.1142614.
    [20] PERCIVAL S S, SIMS C A. Wine modifies the effects of alcohol on immune cells of mice[J]. J Nutr, 2000, 130(5): 1091-1094. doi: 10.1093/jn/130.5.1091
    [21] SONG K, COLEMAN R A, ZHU X, et al. Chronic ethanol consumption by mice results in activated splenic T cells[J]. J Leukoc Biol, 2002, 72(6): 1109-1116. doi: 10.1189/jlb.72.6.1109
    [22] SONG K, COLEMAN R A, ALBER C, et al. TH1 cytokine response of CD57+ T-cell subsets in healthy controls and patients with alcoholic liver disease[J]. Alcohol, 2001, 24(3): 155-167. doi: 10.1016/S0741-8329(01)00146-X
    [23] MATOS L C, BATISTA P, MONTEIRO N, et al. Lymphocyte subsets in alcoholic liver disease[J]. World J Hepatol, 2013, 5(2): 46-55. doi: 10.4254/wjh.v5.i2.46
    [24] VIDALI M, HIETALA J, OCCHINO G, et al. Immune responses against oxidative stress-derived antigens are associated with increased circulating tumor necrosis factor-alpha in heavy drinkers[J]. Free Radic Biol Med, 2008, 45(3): 306-311. doi: 10.1016/j.freeradbiomed.2008.04.012
    [25] SRIVASTAVA R K, SAPRA L. The rising era of "immunoporosis": role of immune system in the pathophysiology of osteoporosis[J]. J Inflamm Res, 2022, 15: 1667-1698. doi: 10.2147/JIR.S351918
    [26] NAUSEEF W M, BORREGAARD N. Neutrophils at work[J]. Nat Immunol, 2014, 15(7): 602-611. doi: 10.1038/ni.2921
    [27] TAN Y, CHEN J, JIANG Y, et al. The anti-periodontitis action of metformin via targeting NLRP3 inflammasome[J]. Arch Oral Biol, 2020, 114: 104692. DOI: 10.1016/j.archoralbio.2020.104692.
    [28] CHEN K, JIAO Y, LIU L, et al. Communications between bone marrow macrophages and bone cells in bone remodeling[J]. Front Cell Dev Biol, 2020, 8: 598263. DOI: 10.3389/fcell.2020.598263.
    [29] 王嘉玉, 颜春鲁, 安方玉, 等. 基于Th17/Treg平衡探讨骨质疏松症研究进展[J]. 中国免疫学杂志, 2024, 40(6): 1283-1291.

    WANG J Y, YAN C L, AN F Y, et al. Research progress of osteoporosis based on Th17/Treg balance[J]. Chinese Journal of Immunology, 2024, 40(6): 1283-1291.
    [30] DAR H Y, SINGH A, SHUKLA P, et al. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice[J]. Sci Rep, 2018, 8(1): 2503. DOI: 10.1038/s41598-018-20896-y.
    [31] HUANG F, WONG P, LI J, et al. Osteoimmunology: the correlation between osteoclasts and the Th17/Treg balance in osteoporosis[J]. J Cell Mol Med, 2022, 26(13): 3591-3597. doi: 10.1111/jcmm.17399
    [32] ZAISS M M, AXMANN R, ZWERINA J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone[J]. Arthritis Rheum, 2007, 56(12): 4104-4112. doi: 10.1002/art.23138
    [33] 胡文慧, 邓金霞, 苏展鹏, 等. T细胞免疫在骨重建和骨再生中的研究进展[J]. 浙江大学学报(医学版), 2024, 53(4): 450-459.

    HU W H, DENG J X, SU Z P, et al. Advances on T cell immunity in bone remodeling and bone regeneration[J]. Journal of Zhejiang University(Medical Sciences), 2024, 53(4): 450-459.
    [34] 姚琼璐, 杨雨清, 徐涛涛. 免疫微环境对绝经后骨质疏松症的影响[J]. 中国骨质疏松杂志, 2023, 29(6): 902-907, 921.

    YAO Q L, YANG Y Q, XU T T. Effect of immune microenvironment on postmenopausal osteoporosis[J]. Chinese Journal of Osteoporosis, 2023, 29(6): 902-907, 921.
    [35] FRASE D, LEE C, NACHIAPPAN C, et al. The inflammatory contribution of B-lymphocytes and neutrophils in progression to osteoporosis[J]. Cells, 2023, 12(13): 1744. DOI: 10.3390/cells12131744.
    [36] SUN W, MEEDNU N, ROSENBERG A, et al. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation[J]. Nat Commun, 2018, 9(1): 5127. DOI: 10.1038/s41467-018-07626-8.
  • 加载中
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 网络出版日期:  2025-10-25

目录

    /

    返回文章
    返回