Influence of intrahepatic fat on the evaluation of hepatic fibrosis using different T1 mapping techniques
-
摘要:
目的 通过不同磁共振T1映射(T1 mapping)方法探讨肝内脂肪对肝纤维化评估的影响。 方法 选取2021年2月—2024年2月于台州市中心医院接受治疗的140例非酒精性脂肪性肝病(NAFLD)患者作为研究对象,收集患者的质子密度脂肪分数以及不同T1 mapping方法测量的肝脏T1值,采用Pearson相关性分析研究T1值与肝脏脂肪测量值间的关系。 结果 反相位(OP)图像上肝实质的T1值显著高于同相位(IP)图像和压脂图(Water)图像上肝实质的T1值,而Water图像上肝实质的T1值高于IP图像上肝实质的T1值(P < 0.05);OP图像上肝实质的T1值与质子密度脂肪分数(PDFF)呈弱正相关关系(r=0.219,P=0.015),IP图像上肝实质的T1值与PDFF呈负相关关系(r=-0.499,P < 0.001),Water图像上肝实质的T1值与PDFF不具有相关性(r=-0.138,P=0.130),同时OP图像和IP图像上与Water图像上肝实质的T1值差值绝对值与PDFF也具有相关性(r=0.373,P < 0.001;r=-0.258,P=0.004)。 结论 通过Dixon水脂分离成像技术获得的T1 mapping Water序列图像受肝内脂肪的影响最小,最大化校正了肝内脂肪对肝脏T1值的影响。 Abstract:Objective To explore the influence of intrahepatic fat on the assessment of hepatic fibrosis by different magnetic resonance T1 mapping methods. Methods A total of 140 patients with nonalcoholic fatty liver disease (NAFLD) treated at Taizhou Central Hospital from February 2021 to February 2024 were selected as the research objects. The proton density fat fraction of patients and liver T1 values obtained using different T1 mapping methods were collected. The relationship between T1 values and liver fat content was analyzed by Pearson correlation. Results T1 value of liver parenchyma on OP image was significantly higher than that on IP image and Water image, while the T1 value on Water image was higher than that on IP image (P < 0.05). The T1 value of liver parenchyma was weakly positively correlated with the proton density fat fraction (PDFF) in OP image (r=0.219, P=0.015), and negatively correlated with PDFF in IP image (r=-0. 499, P < 0.001). There is no correlation between the T1 value of liver parenchyma on Water image and PDFF (r=-0.138, P=0.130), while the absolute value of T1 value difference between OP image and IP image is also correlated with PDFF (r=0.373, P < 0.001; r=-0.258, P=0.004). Conclusion T1 mapping water sequence images obtained using Dixon water-fat separation imaging technology are minimally affected by hepatic fat, providing the most effective correction for fat-related interference in liver T1 measurements. -
表 1 NAFLD患者不同T1 mapping方法T1值和PDFF
Table 1. T1 values and PDFF using various T1 mapping methods in NAFLD patients
项目 数值(x±s) 范围 T1-IP(ms) 614.67±23.59 563.76~679.01 T1-OP(ms) 688.04±33.86 648.40~749.73 T1-Water(ms) 633.67±30.42 591.04~708.35 PDFF(%) 4.36±1.28 2.26~6.33 T1-(Water/IP) 20.77±6.45 10.15~29.34 T1-(Water/OP) -52.95±12.69 -57.36~-4.30 注:T1-IP为同相位T1 mapping序列的T1值;T1-OP为反相位T1 mapping序列的T1值;T1-Water为压脂图T1 mapping序列的T1值;T1-(Water/IP)为T1-Water和T1-IP的差值;T1-(Water/OP)为T1-Water和T1-OP的差值。 -
[1] 丁成, 马语卓, 黄兴兆, 等. 牙周基础治疗对非酒精性脂肪性肝病伴牙周炎患者肝功能及血脂水平的影响[J]. 中华全科医学, 2021, 19(8): 1280-1282, 1299. doi: 10.16766/j.cnki.issn.1674-4152.002040DING C, MA Y Z, HUANG X H, et al. Effect of periodontal basic treatment on liver function and lipid levels in periodontitis patients with non-alcoholic fatty liver disease[J]. Chinese Journal of General Practice, 2021, 19(8): 1280-1282, 1299. doi: 10.16766/j.cnki.issn.1674-4152.002040 [2] 王娟娟, 舍玲, 梁灿灿, 等. 非酒精性脂肪性肝病肝纤维化程度与心脏左心室改变的关系[J]. 医学研究杂志, 2024, 53(7): 79-84.WANG J J, SHE L, LIANG C C, et al. Relationship between the degree of liver fibrosis and left ventricular changes in non-alcoholic fatty liver disease[J]. Journal of Medical Research, 2024, 53(7): 79-84. [3] TENG M L, NG C H, HUANG D Q, et al. Global incidence and prevalence of nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2023, 29(Suppl): S32-S42. doi: 10.3350/cmh.2022.0365 [4] EL-KASSAS M, CABEZAS J, COZ P I, et al. Nonalcoholic fatty liver disease: current global burden[J]. Semin Liver Dis, 2022, 42(3): 401-412. doi: 10.1055/a-1862-9088 [5] SAIMAN Y, DUARTE-ROJO A, RINELLA M E. Fatty liver disease: diagnosis and stratification[J]. Annu Rev Med, 2022, 73(1): 529-544. doi: 10.1146/annurev-med-042220-020407 [6] HAYASE J, BRADFIELD J. T1 Mapping: a complementary tool for substrate visualization[J]. JACC Clin Electrophysiol, 2023, 9(6): 749-750. doi: 10.1016/j.jacep.2023.01.038 [7] VENKATESH S K, TORBENSON M S. Liver fibrosis quantification[J]. Abdom Radiol(NY), 2022, 47(3): 1032-1052. doi: 10.1007/s00261-021-03396-y [8] WEN X, FENG X, KANG Y, et al. Application progress of Gd-EOB-DTPA-enhanced MRI T1 mapping in hepatic diffuse diseases[J]. Curr Med Imaging, 2022, 18(12): 1276-1281. doi: 10.2174/1573405617666211130153450 [9] JIANG Y L, ZOU J, FAN F X, et al. Application of multi-echo Dixon and MRS in quantifying hepatic fat content and staging liver fibrosis[J]. Sci Rep, 2023, 13(1): 12555. DOI: 10.1038/s41598-023-39361-6. [10] 中华中医药学会脾胃病分会. 非酒精性脂肪性肝病中医诊疗专家共识(2023)[J]. 中国中西医结合消化杂志, 2024, 32(1): 1-7.Branch of Gastrointestinal Diseases, China Association of Chinese Medicine. Expert consensus on Traditional Chinese Medicine diagnosis and treatment of non-alcoholic fatty liver disease(2023)[J]. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2024, 32(1): 1-7. [11] AMER J, ALNEES M, SALAMEH M, et al. The diagnostic utility of FIB-4 as a non-invasive tool for liver fibrosis scoring among NAFLD patients: a retrospective cross-sectional study[J]. Eur Rev Med Pharmacol Sci, 2024, 28(8): 3104-3111. [12] VON ULMENSTEIN S, BOGDANOVIC S, HONCHAROVA-BILETSKA H, et al. Assessment of hepatic fibrosis and inflammation with look-locker T1 mapping and magnetic resonance elastography with histopathology as reference standard[J]. Abdom Radiol(NY), 2022, 47(11): 3746-3757. doi: 10.1007/s00261-022-03647-6 [13] DE LANGE C, THRANE K J, THOMASSEN K S, et al. Hepatic magnetic resonance T1-mapping and extracellular volume fraction compared to shear-wave elastography in pediatric Fontan-associated liver disease[J]. Pediatr Radiol, 2021, 51(1): 66-76. doi: 10.1007/s00247-020-04805-y [14] KLAUS J B, GOERKE U, KLARHÖFER M, et al. MRI Dixon fat-corrected look-locker T1 mapping for quantification of liver fibrosis and inflammation-a comparison with the non-fat-corrected shortened modified look-locker inversion recovery technique[J]. Invest Radiol, 2024, 59(11): 754-760. doi: 10.1097/RLI.0000000000001084 [15] HIGASHI M, TANABE M, YAMANE M, et al. Impact of fat on the apparent T1 value of the liver: assessment by water-only derived T1 mapping[J]. Eur Radiol, 2023, 33(10): 6844-6851. doi: 10.1007/s00330-023-10052-0 [16] THOMPSON R B, CHOW K, MAGER D, et al. Simultaneous proton density fat-fraction and R2* imaging with water-specific T1 mapping (PROFIT1): application in liver[J]. Magn Reson Med, 2021, 85(1): 223-238. doi: 10.1002/mrm.28434 [17] WANG K, CUNHA G M, HASENSTAB K, et al. Deep learning for inference of hepatic proton density fat fraction from T1-weighted In-phase and opposed-phase MRI: retrospective analysis of population-based trial data[J]. AJR Am J Roentgenol, 2023, 221(5): 620-631. doi: 10.2214/AJR.23.29607 [18] ELFAAL M, SUPERSAD A, FERGUSON C, et al. Two-point Dixon and six-point Dixon magnetic resonance techniques in the detection, quantification and grading of hepatic steatosis[J]. World J Radiol, 2023, 15(10): 293-303. doi: 10.4329/wjr.v15.i10.293 [19] LI J H, LU X, ZHU Z, et al. Head-to-head comparison of magnetic resonance elastography-based liver stiffness, fat fraction, and T1 relaxation time in identifying at-risk NASH[J]. Hepatology, 2023, 78(4): 1200-1208. doi: 10.1097/HEP.0000000000000417 [20] TONET E, BAGGIANO A, PAVASINI R, et al. Current evidence on the diagnostic and prognostic role of native T1 mapping in heart diseases[J]. Trends Cardiovasc Med, 2021, 31(7): 448-454. doi: 10.1016/j.tcm.2020.08.001 [21] ERDEN A, KURU ÖZ D, PEKER E, et al. MRI quantification techniques in fatty liver: the diagnostic performance of hepatic T1, T2, and stiffness measurements in relation to the proton density fat fraction[J]. Diagn Interv Radiol, 2021, 27(1): 7-14. doi: 10.5152/dir.2020.19654 [22] FELLNER C, NICKEL M D, KANNENGIESSER S, et al. Water-fat separated T1 mapping in the liver and correlation to hepatic fat fraction[J]. Diagnostics(Basel), 2023, 13(2): 201. DOI: 10.3390/diagnostics13020201. -
点击查看大图
计量
- 文章访问数: 7
- HTML全文浏览量: 5
- PDF下载量: 0
- 被引次数: 0
下载: