The regulation of METTL3 on the proliferation and migration of SCAPs in the inflammatory environment
-
摘要:
目的 探索METTL3是否对炎症环境中根尖牙乳头干细胞(SCAPs)增殖及迁移能力起调节作用,为临床牙髓再生治疗提供新的理论基础。 方法 采用髓腔暴露法构建大鼠年轻恒牙根尖周炎模型,分离、培养鉴定并分为炎症环境中的SCAPs(AP-SCAPs)组和健康状态下SCAPs(H-SCAPs)组,采用CCK-8及划痕实验检测细胞增殖、迁移能力,q-PCR检测2组METTL3表达水平;慢病毒转染构建过表达METTL3的AP-SCAPs(Lv-M), 设置对照组Lv-M-Ctrl,siRNA干扰法构建沉默METTL3的AP-SCAPs(si-M),对照组si-M-Ctrl,采用CCK-8和划痕实验检测各组细胞增殖、迁移能力。 结果 AP-SCAPs较H-SCAPs的增殖、迁移能力降低(P<0.05),AP-SCAPs的METTL3表达量明显低于H-SCAPs(1.00±0.05 vs. 1.62±0.17, P=0.004);CCK-8结果显示,Lv-M较对照组的增殖能力在24 h、72 h、120 h、168 h均增强(P<0.05);si-M与si-M-Ctrl相比,细胞增殖能力均下降(P<0.05)。划痕实验结果显示,Lv-M组细胞迁移率明显高于Lv-M-Ctrl组[(70.21±3.66)% vs. (27.26±4.69)%, P<0.001];si-M组细胞迁移率较si-M-Ctrl组降低[(44.11±3.90)% vs. (72.33±5.61)%, P=0.002]。 结论 METTL3可以调节炎症环境中SCAPs增殖和迁移的能力。 Abstract:Objective To explore whether METTL3 plays a regulatory role in the proliferation and migration capacity of apical dental papilla stem cells (SCAPs) in inflammatory environments and to provide a new theoretical basis for clinical endodontic regenerative therapy. Methods A permanent tooth apical periodontitis model of young rat was constructed by means of the pulp exposure method. In addition, AP-SCAPs and H-SCAPs were isolated, cultured and identified. The proliferation and migration potential of the cells was detected by CCK-8 and scratch assay, and the expression level of METTL3 was detected by Q-PCR in the two groups. Lentiviral transfection was utilized to construct AP-SCAPs overex-pressing METTL3 (Lv-M), with Lv-M-Ctrl serving as the control. The construction of AP-SCAPs silencing METTL3 (si-M) was achieved by employing the group. siRNA interference method. The proliferation and migration ability of cells in each group was detected by CCK-8 and scratch assay, respectively. Results In comparison with H-SCAPs, AP-SCAPs demonstrated a reduced capacity for proliferation and migration (P < 0.05). Furthermore, and the METTL3 expression levels in AP-SCAPs were significantly lower than those in H-SCAPs (1.00±0.05 vs. 1.62±0.17, P=0.004). The CCK-8 results demonstrated that the proliferation capacity of Lv-M was elevated at 24, 72, 120 and 168 hours in comparison to the control group (P < 0.05). In comparison with the si-M-Ctrl group, the si-M group demonstrated a decrease in cell proliferation ability (P < 0.05). The results of the scratch assay demonstrated that the cell migration rate of the Lv-M group was higher than that of the Lv-M-Ctrl group [(70.21±3.66)% vs. (27.26±4.69)%, P < 0.001]. Furthermore, the cell migration rate of the si-M group was decreased in comparison with the si-M-Ctrl group [(44.11±3.90)% vs. (72.33±5.61)%, P=0.002]. Conclusion METTL3 has been demonstrated to play a regulatory role in the proliferation and migration of SCAPs within an inflammatory environment. -
Key words:
- Apical dental papilla stem cells /
- METTL3 /
- Proliferation /
- Migration
-
表 1 实验所用引物序列
Table 1. Primer sequences used in this experiment
基因 引物 引物序列(5'-3') METTL3 Forward CCATCCGTCTTGCCATCTC METTL3 Reverse ATAGTCCCTGCTGCCTCTC β-actin Forward CGGTCAGGTCATCACTATC β-actin Reverse CAGGGCAGTAATCTCCTTC 表 2 AP-SCAPs和H-SCAPs流式细胞术实验数据(x±s,%)
Table 2. Flow cytometry data of AP-SCAPs and H-SCAPs (x±s, %)
组别 n CD29 CD34 CD45 CD90 AP-SCAPs 3 93.13±0.15 7.37±0.21 2.53±0.47 95.20±0.56 H-SCAPs 3 94.93±0.21 6.03±0.15 3.63±0.38 95.53±0.35 表 3 AP-SCAPs和H-SCAPs CCK-8实验数据比较(x±s)
Table 3. Comparison of CCK-8 assay results for AP-SCAPs and H-SCAPs (x±s)
组别 n 0 h 24 h 72 h 120 h 168 h AP-SCAPs 3 0.12±0.01 0.37±0.01 0.53±0.02 0.68±0.02 0.90±0.06 H-SCAPs 3 0.11±0.01 0.43±0.01 0.60±0.01 0.75±0.01 1.26±0.01 F值 1.124 17.064 7.082 5.991 10.963 P值 0.324 <0.001 0.019 0.004 0.008 表 4 Lv-M和Lv-M-Ctrl组CCK-8实验数据比较(x±s)
Table 4. Comparison of CCK-8 assay data for Lv-M and Lv-M Ctrl (x±s)
组别 n 0 h 24 h 72 h 120 h 168 h Lv-M 3 0.16±0.01 0.36±0.01 0.52±0.01 0.72±0.01 0.88±0.01 Lv-M-Ctrl 3 0.13±0.01 0.31±0.01 0.47±0.01 0.64±0.01 0.75±0.01 F值 9.544 26.411 17.740 18.582 30.985 P值 <0.001 <0.001 <0.001 <0.001 <0.001 表 5 si-M和si-M-Ctrl CCK-8实验数据比较(x±s)
Table 5. Comparison of CCK-8 assay data for si-M and si-M-Ctrl (x±s)
组别 n 0 h 24 h 72 h 120 h 168 h si-M 3 0.16±0.01 0.31±0.01 0.39±0.01 0.50±0.01 0.63±0.01 si-M-Ctrl 3 0.16±0.01 0.36±0.01 0.44±0.01 0.57±0.01 0.72±0.01 F值 0.234 8.847 13.587 23.031 22.508 P值 0.826 <0.001 <0.001 <0.001 <0.001 -
[1] YANG S Y, LIU Q, CHEN S J, et al. Extracellular vesicles delivering nuclear factor I/C for hard tissue engineering: treatment of apical periodontitis and dentin regeneration[J]. Tissue Eng, 2022, 13: 20417314221084095. DOI: 10.1177/20417314221084095. [2] XIAO W, CHI Z B, SHI W T, et al. Modified pulpotomy procedure in immature permanent teeth with apical periodontitis: a randomised controlled trial[J]. BMJ Open, 2022, 12(12): e057714. DOI: 10.1136/bmjopen-2021-057714. [3] HUANG Q, SUN Y M, HUANG W S, et al. FTO positively regulates odontoblastic differentiation via SMOC2 in human stem cells from the apical papilla under inflammatory microenvironment[J]. Int J Mol Sci, 2024, 25(7): 4045. DOI: 10.3390/ijms25074045. [4] KWON S K, KYEONG M, ADASOORIYA D, et al. Histologic and electron microscopic characterization of a human immature permanent premolar with chronic apical abscess 16 years after regenerative endodontic procedures[J]. J Endod, 2023, 49(8): 1051-1057. doi: 10.1016/j.joen.2023.05.017 [5] DIGKA A, SAKKA D, LYROUDIA K. Histological assessment of human regenerative endodontic procedures (REP) of immature permanent teeth with necrotic pulp/apical periodontitis: a systematic review[J]. Aust Endod J, 2020, 46(1): 140-153. doi: 10.1111/aej.12371 [6] 黄璟, 周毅. N6-甲基腺嘌呤RNA甲基化在口腔发育及相关疾病中的研究进展[J]. 口腔医学研究, 2023, 39(9): 775-779.HUANG J, ZHOU Y. Advances of N6-methyladenine RNA methylation in oral development and diseases[J]. Journal of Oral Science Research, 2023, 39(9): 775-779. [7] MA L, ZHOU X, YAO S Y, et al. METTL3-dependent m6A modification of PSEN1 mRNA regulates craniofacial development through the Wnt/β-catenin signaling pathway[J]. Cell Death Dis, 2024, 15(3): 229. DOI: 10.1038/s41419-024-06606-9. [8] LIN J Y, ZHU Q Q, HUANG J L, et al. Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating METTL3 and paracrine factors[J]. Stem Cells Int, 2020, 2020: 2830565. DOI: 10.1155/2020/2830565. [9] SONG B M, ZENG Y, CAO Y Q, et al. Emerging role of METTL3 in inflammatory diseases: mechanisms and therapeutic applications[J]. Front Immunol, 2023, 14: 1221609. DOI: 10.3389/fimmu.2023.1221609. [10] LIU L, WU Y, LI Q L, et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma[J]. Mol Ther, 2020, 28(10): 2177-2190. doi: 10.1016/j.ymthe.2020.06.024 [11] RAZGHONOVA Y, ZYMOVETS V, WADELIUS P, et al. Transcriptome analysis reveals modulation of human stem cells from the apical papilla by species associated with dental root canal infection[J]. Int J Mol Sci, 2022, 23(22): 14420. DOI: 10.3390/ijms232214420. [12] 董乃隽, 尹侃, 李霄霞, 等. 不同提取方法对人脂肪间充质干细胞生物学活性影响[J]. 青岛大学学报(医学版), 2021, 57(6): 791-795.DONG N J, YIN K, LI X X, et al. Effects of different extraction methods on the biological activity of human adipose-derived mesenchymal stem cells[J]. Journal of Qingdao University (Medical Sciences), 2021, 57(6): 791-795. [13] 朱青青, 孙琛, 孙建礼, 等. ENPP1低表达对口腔鳞癌细胞上皮间质转化的作用及机制[J]. 中华全科医学, 2022, 20(4): 550-554, 564. doi: 10.16766/j.cnki.issn.1674-4152.002398ZHU Q Q, SUN C, SUN J L, et al. Effect and mechanism of low ENPP1 expression on the epithelial-mesenchymal transition of oral squamous cell carcinoma cell line[J]. Chinese Journal of General Practice, 2022, 20(4): 550-554, 564. doi: 10.16766/j.cnki.issn.1674-4152.002398 [14] RAKHIMOVA O, SCHMIDT A, LANDSTRÖM M, et al. Cytokine secretion, viability, and real-time proliferation of apical-papilla stem cells upon exposure to oral bacteria[J]. Front Cell Infect Microbiol, 2021, 10: 620801. DOI: 10.3389/fcimb.2020.620801. [15] CUI Y J, XIE J, FU Y J, et al. Berberine mediates root remodeling in an immature tooth with apical periodontitis by regulating stem cells from apical papilla differentiation[J]. Int J Oral Sci, 2020, 12(1): 18. DOI: 10.1038/s41368-020-0085-7. [16] LUO H Y, LIU W J, ZHANG Y L, et al. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells[J]. Stem Cell Res Ther, 2021, 12(1): 159. DOI: 10.1186/s13287-021-02223-x. [17] YAO Y P, YANG Y, GUO W H, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation[J]. Nat Commun, 2021, 12(1): 1333. DOI: 10.1038/s41467-021-21594-6. [18] SHENG R, WANG Y, WU Y S, et al. METTL3-Mediated m6A mRNA methylation modulates tooth root formation by affecting nfic translation[J]. J Bone Miner Res, 2021, 36(2): 412-423. -
下载: