| [1] |
刘继松, 邢福席, 付全有, 等. 点阵二氧化碳激光治疗儿童深度烧伤后早期增生性瘢痕的效果评价[J]. 中华全科医学, 2023, 21(2): 250-254. doi: 10.16766/j.cnki.issn.1674-4152.002857J S, XING F X, FU Q Y, et al. Evaluation of fractional carbon dioxide laser in the treatment of early hypertrophic scars after deep burns in children[J]. Chinese Journal of General Practice, 2023, 21(2): 250-254. doi: 10.16766/j.cnki.issn.1674-4152.002857
|
| [2] |
OGAWA R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids: a 2020 update of the algorithms published 10 years ago[J]. Plast Reconstr Surg, 2022, 149(1): 79e-94e. doi: 10.1097/PRS.0000000000008667
|
| [3] |
金以超, 王晓川, 敖春萍, 等. 瘢痕疙瘩相关性瘙痒的发病机制及治疗研究进展[J]. 昆明医科大学学报, 2024, 45(12): 167-171.JIN Y C, WANG X C, AO C P, et al. Pruritus in keloid: pathogenesis and treatments[J]. Journal of Kunming Medical University, 2024, 45(12): 167-171.
|
| [4] |
FU M N, CHEN Y J, SHI X. ZC3H13 Accelerates keloid formation by mediating n(6)-methyladenosine modification of HIPK2[J]. Biochem Genet, 2024, 62(3): 1857-1871. doi: 10.1007/s10528-023-10514-6
|
| [5] |
JIANG X L, LIU B Y, NIE Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. DOI: 10.1038/s41392-020-00450-x.
|
| [6] |
KURIMOTO-NISHIGUCHI M, MURAOKA K, INABA Y, et al. Glycoprotein M6A upregulation detected by transcriptome analysis controls the proliferation of keloidal fibroblasts[J]. J Dermatol, 2023, 50(9): 1170-1179. doi: 10.1111/1346-8138.16861
|
| [7] |
REN S, JI Y C, WANG M M, et al. The m6A demethylase FTO promotes keloid formation by up-regulating COL1A1[J]. Ann Transl Med, 2023, 11(1): 15. DOI: 10.21037/atm-22-6021.
|
| [8] |
RUFFENACH G, MEDZIKOVIC L, ARYAN L, et al. HNRNPA2B1: RNA-binding protein that orchestrates smooth muscle cell phenotype in pulmonary arterial hypertension[J]. Circulation, 2022, 146(16): 1243-1258. doi: 10.1161/CIRCULATIONAHA.122.059591
|
| [9] |
GEUENS T, BOUHY D, TIMMERMAN V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8): 851-867. doi: 10.1007/s00439-016-1683-5
|
| [10] |
ALARCÓN C R, GOODARZI H, LEE H, et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308. doi: 10.1016/j.cell.2015.08.011
|
| [11] |
LIU H, LI D X, SUN L N, et al. Interaction of lncRNA MIR100HG with HNRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression[J]. Mol Cancer, 2022, 21(1): 74. DOI: 10.1186/s12943-022-01555-3.
|
| [12] |
JIANG F J, TANG X Z, TANG C, et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA[J]. J Hematol Oncol, 2021, 14(1): 54. DOI: 10.1186/s13045-021-01066-6.
|
| [13] |
LI Y L, LI K X, LOU X Y, et al. HNRNPA2B1-mediated microrna-92a upregulation and section acts as a promising noninvasive diagnostic biomarker in colorectal cancer[J]. Cancers (Basel), 2023, 15(4): 1367. DOI: 10.3390/cancers15051367.
|
| [14] |
XU X W, GU S C, HUANG X, et al. The role of macrophages in the formation of hypertrophic scars and keloids[J]. Burns Trauma, 2020, 8: tkaa006. DOI: 10.1093/burnst/tkaa006.
|
| [15] |
WALSH L A, WU E, PONTES D, et al. Keloid treatments: an evidence-based systematic review of recent advances[J]. Syst Rev, 2023, 12(1): 42. DOI: 10.1186/s13643-023-02192-7.
|
| [16] |
WON P, COOPER M, GILLENWATER T J, et al. Treatment of hypertrophic burn scars with laser therapy: a review of adverse events[J]. Ann Plast Surg, 2023, 91(6): 715-719. doi: 10.1097/SAP.0000000000003712
|
| [17] |
SHI H L, WEI J B, HE C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019, 74(4): 640-650. doi: 10.1016/j.molcel.2019.04.025
|
| [18] |
CHEN X Y, ZHANG J, ZHU J S. The role of m(6)A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1): 103. DOI: 10.1186/s12943-019-1033-z.
|
| [19] |
DU K Z, ZHANG L B, LEE T, et al. m(6)A RNA methylation controls neural development and is involved in human diseases[J]. Mol Neurobiol, 2019, 56(3): 1596-1606. doi: 10.1007/s12035-018-1138-1
|
| [20] |
XU J J, LIU Y N, LIU J C, et al. The identification of critical m(6)A RNA methylation regulators as malignant prognosis factors in prostate adenocarcinoma[J]. Front Genet, 2020, 11: 602485. DOI: 10.3389/fgene.2020.602485.
|
| [21] |
YANG R H, WANG X X, ZHENG W L, et al. Bioinformatics analysis and verification of m6A related genes based on the construction of keloid diagnostic model[J]. Int Wound J, 2023, 20(7): 2700-2717. doi: 10.1111/iwj.14144
|
| [22] |
LIU F, LI T, ZHAN X A. Silencing circular RNAPTPN12 promoted the growth of keloid fibroblasts by activating Wnt signaling pathway via targeting microRNA-21-5p[J]. Bioengineered, 2022, 13(2): 3503-3515. doi: 10.1080/21655979.2022.2029108
|
| [23] |
ZHANG Y G, CHENG C T, WANG S, et al. Knockdown of FOXM1 inhibits activation of keloid fibroblasts and extracellular matrix production via inhibition of TGF-β1/Smad pathway[J]. Life Sci, 2019, 232: 116637. DOI: 10.1016/j.lfs.2019.116637.
|
| [24] |
WANG Q, ZHONG Y X, LI Z J, et al. Multitranscriptome analyses of keloid fibroblasts reveal the role of the HIF-1α/HOXC6/ERK axis in keloid development[J]. Burns Trauma, 2022, 10: tkac013. DOI: 10.1093/burnst/tkac013.
|
| [25] |
JIA C M, GUO Y W, CHEN Y, et al. HNRNPA2B1-mediated m6A modification of TLR4 mRNA promotes progression of multiple myeloma[J]. J Transl Med, 2022, 20(1): 537. DOI: 10.1186/s12967-022-03750-8.
|
| [26] |
HAO W J, CHEN Z M, TANG J Z, et al. HNRNPA2B1 promotes the occurrence and progression of hepatocellular carcinoma by downregulating PCK1 mRNA via a m6A RNA methylation manner[J]. J Transl Med, 2023, 21(1): 861. DOI: 10.1186/s12967-023-04704-4.
|