[1] |
BIEBER K, HUNDT J E, YU X, et al. Autoimmune pre-disease[J]. Autoimmu Rev, 2023, 22(2): 103236. DOI: 10.1016/j.autrev.2022.103236.
|
[2] |
李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(3): 299-303.LI J, LYU L J. Infections in autoimmune inflammatory rheumatic diseases in the era of targeted therapies[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(3): 299-303.
|
[3] |
PISETSKY D S. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19(8): 509-524.
|
[4] |
GRAY P E, DAVID C. Inborn errors of immunity and autoimmune disease[J]. J Allergy Clin Immunol Pract, 2023, 11(6): 1602-1622.
|
[5] |
XIAO Z X, MILLER J S, ZHENG S G. An updated advance of autoantibodies in autoimmune diseases[J]. Autoimmun Rev, 2021, 20(2): 102743. DOI: 10.1016/j.autrev.2020.102743.
|
[6] |
YASUNAGA M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease[J]. Semin Cancer Biol, 2020, 8(64): 1-12.
|
[7] |
LEE D S W, ROJAS O L, GOMMERMAN J L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights[J]. Nat Rev Drug Discov, 2021, 20(3): 179-199.
|
[8] |
STÄNDER S, FÄRBER B, RADEKE S, et al. Assessment of healthcare costs for patients with pemphigus and bullous pemphigoid in an academic centre in germany[J]. Br J Dermatol, 2020, 182(5): 1296-1297.
|
[9] |
HSIEH P H, WU O, GEUE C, et al. Economic burden of rheumatoid arthritis: a systematic review of literature in biologic era[J]. Ann Rheum Dis, 2020, 79(6): 771-777.
|
[10] |
BLANCO L P, KAPLAN M J. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases[J]. PLoS Biol, 2023, 21(4): e3002084. DOI: 10.1371/journal.pbio.3002084.
|
[11] |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
|
[12] |
宋梦婷, 王振杰, 郭培霞, 等. 老年起病类风湿关节炎的诊治进展[J]. 中华全科医学, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884SONG M T, WANG Z J, GUO P X, et al. Advances in the diagnosis and treatment of rheumatoid arthritis in elderly patients[J]. Chinese Journal of General Practice, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
|
[13] |
FINCKH A, GILBERT B, HODKINSON B, et al. Global epidemiology of rheumatoid arthritis[J]. Nat Rev Rheumatol, 2022, 18(10): 591-602.
|
[14] |
LIU Y M, ZHU J L, XU L L, et al. Copper regulation of immune response and potential implications for treating orthopedic disorders[J]. Front Mol Biosci, 2022, 9: 1065265. DOI: 10.3389/fmolb.2022.1065265.
|
[15] |
CIAFFAGLIONE V, RIZZARELLI E. Carnosine, zinc and copper: a menage a trois in bone and cartilage protection[J]. Int J Mol Sci, 2023, 24(22): 16209. DOI: 10.3390/ijms242216209.
|
[16] |
BAÑULS-MIRETE M, OGDIE A, GUMA M. Micronutrients: essential treatment for inflammatory arthritis?[J]. Curr Rheumatol Rep, 2020, 22(12): 87. DOI: 10.1007/s11926-020-00962-z.
|
[17] |
WANG H J, ZHANG R R, SHEN J, et al. Circulating level of blood iron and copper associated with inflammation and disease activity of rheumatoid arthritis[J]. Biol Trace Elem Res, 2023, 201(1): 90-97.
|
[18] |
CUI X N, WANG Y, LIU H, et al. The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy[J]. Oxid Med Cell Longev, 2022, 2022: 5418376. DOI: 10.1155/2022/5418376.
|
[19] |
HU H, DOU X Y, HU X J, et al. Identification of a novel cuproptosis-related gene signature for rheumatoid arthritis: a prospective study[J]. J Gene Med, 2023, 25(11): e3535. DOI: 10.1002/jgm.3535.
|
[20] |
ZHOU Y, LI X, NG L Q, et al. Identification of copper death-associated molecular clusters and immunological profiles in rheumatoid arthritis[J]. Front Immunol, 2023, 14: 1103509. DOI: 10.3389/fimmu.2023.1103509.
|
[21] |
JIANG M Y, LIU K C, LU S Y, et al. Verification of cuproptosis-related diagnostic model associated with immune infiltration in rheumatoid arthritis[J]. Front Endocrinol, 2023, 14: 1204926. DOI: 10.3389/fendo.2023.1204926.
|
[22] |
YANG Y, LIANG S Y, GENG H E, et al. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore[J]. Free Radic Biol Med, 2022, 193(Pt 2): 638-647. DOI: 10.1016/j.freeradbiomed.2022.11.023.
|
[23] |
MURI J, KOPF M. Redox regulation of immunometabolism[J]. Nat Rev Immunol, 2021, 21(6): 363-381.
|
[24] |
ZUILY L, LAHRACH N, FASSLER R, et al. Copper induces protein aggregation, a toxic process compensated by molecular chaperones[J]. mBio, 2022, 13(2): e0325121. DOI: 10.1128/mbio.03251-21.
|
[25] |
ZHAO H Q, WEN Z K, XIONG S D. Activated lymphocyte-derived DNA drives glucose metabolic adaptation for inducing macrophage inflammatory response in systemic lupus erythematosus[J]. Cells, 2023, 12(16). DOI: 10.3390/cells12162093.
|
[26] |
赵磊, 万磊, 刘健, 等. 巨噬细胞炎症极化在类风湿关节炎中的作用[J]. 医学研究杂志, 2023, 52(2): 11-14.ZHAO L, WAN L, LIU J, et al. Role of macrophage inflammatory polarization in rheumatoid arthritis[J]. Journal of Medical Research, 2023, 52(2): 11-14.
|
[27] |
刘郑宇, 徐亮. 51例晚发型系统性红斑狼疮的临床特点及诊治要点分析[J]. 中华全科医学, 2023, 21(8): 1271-1274. doi: 10.16766/j.cnki.issn.1674-4152.003100LIU Z Y, XU L. Analysis of clinical characteristics and diagnostic and treatment of 51 cases of late-onset systemic lupus erythematosus[J]. Chinese Journal of General Practice, 2023, 21(8): 1271-1274. doi: 10.16766/j.cnki.issn.1674-4152.003100
|
[28] |
MUÑOZ-URBANO M, QUINTERO-GONZÁLEZ D C, VASQUEZ G. T cell metabolism and possible therapeutic targets in systemic lupus erythematosus: a narrative review[J]. Immunopharmacol Immunotoxicol, 2022, 44(4): 457-470.
|
[29] |
TANG D L, CHEN X, KROEMER G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5): 417-418.
|
[30] |
WANG H, LI X B, HUANG R G, et al. Essential trace element status in systemic lupus erythematosus: a meta-analysis based on case-control studies[J]. Biol Trace Elem Res, 2023, 201(5): 2170-2182.
|
[31] |
YANG W J, LI L M, FENG X M, et al. Genome-wide association and mendelian randomization study of blood copper levels and 213 deep phenotypes in humans[J]. Commun Biol, 2022, 5(1): 405. DOI: 10.1038/s42003-022-03351-7.
|
[32] |
LI W Q, GUAN X R, WANG Y, et al. Cuproptosis-related gene identification and immune infiltration analysis in systemic lupus erythematosus[J]. Front Immunol, 2023, 14: 1157196. DOI: 10.3389/fimmu.2023.1157196.
|
[33] |
XIE J M, YANG Y N, GAO Y B, et al. Cuproptosis: mechanisms and links with cancers[J]. Mol Cancer, 2023, 22(1): 46. DOI: 10.1186/s12943-023-01732-y.
|
[34] |
YAO Q, WU X H, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56. DOI: 10.1038/s41392-023-01330-w.
|
[35] |
ZHOU J Q, LIU C, SUN Y T, et al. Genetically predicted circulating levels of copper and zinc are associated with osteoarthritis but not with rheumatoid arthritis[J]. Osteoarthritis Cartilage, 2021, 29(7): 1029-1035.
|
[36] |
LI G Y, CHENG T, YU X F. The impact of trace elements on osteoarthritis[J]. Front Med (Lausanne), 2021, 8: 771297. DOI: 10.3389/fmed.2021.771297.
|
[37] |
黎咏诗, 陈鸿, 牟平, 等. 关节液和软骨中微量元素含量与膝关节骨关节炎严重程度的相关性研究[J]. 中国修复重建外科杂志, 2023, 37(5): 584-588.LI Y S, CHEN H, MOU P, et al. Relationship between trace elements in synovial fluid and cartilage and severity of knee osteoarthritis[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(5): 584-588.
|
[38] |
YANG W M, LV J F, WANG Y Y, et al. The daily intake levels of copper, selenium, and zinc are associated with osteoarthritis but not with rheumatoid arthritis in a cross-sectional study[J]. Biol Trace Elem Res, 2023, 201(12): 5662-5670.
|
[39] |
HUI D, TING X, HAN X Y, et al. Identification and immune characteristics of cuproptosis-related genes in osteoarthritis[J]. J Biol Regul Homeost Agents, 2023, 37(3): 1335-1351.
|
[40] |
WANG W J, CHEN Z Y, HUA Y H. Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression[J]. Biomolecules, 2023, 13(1): 127. DOI: 10.3390/biom13010127.
|
[41] |
ZHANG N D, JI C X, PENG X Y, et al. Bioinformatics analysis identified immune infiltration, risk and drug prediction models of copper-induced death genes involved in salivary glands damage of primary Sjögren's syndrome[J]. Medicine, 2022, 101(41): e31050. DOI: 10.1097/md.0000000000031050.
|