[1] |
HE W, LI Q, LU Y, et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy[J]. Curr Gene Ther, 2022, 22(5): 368-385.
|
[2] |
杨茜云, 沈国强. 弓形虫感染与肿瘤的关系研究进展[J]. 中国热带医学, 2021, 21(12): 1201-1205.YANG Q Y, SHEN G Q. The interplay between toxoplasma gondii infections and tumors[J]. China Tropical Medicine, 2021, 21(12): 1201-1205.
|
[3] |
刘舒, 李抒凝, 陈晶. 虫类中药在肿瘤治疗中的机制研究进展[J]. 环球中医药, 2022, 15(7): 1286-1290. doi: 10.3969/j.issn.1674-1749.2022.07.038LIU S, LI S N, CHEN J. Research progress on the mechanism of insect Chinese medicine in cancer treatment[J]. Global Traditional Chinese Medicine, 2022, 15(7): 1286-1290. doi: 10.3969/j.issn.1674-1749.2022.07.038
|
[4] |
何晴, 吴银娟, 殷颖璇, 等. 抗寄生虫药物在抗恶性肿瘤中的作用研究进展[J]. 热带医学杂志, 2021, 21(10): 1361-1363. doi: 10.3969/j.issn.1672-3619.2021.10.029HE Q, WU Y J, YIN Y X, et al. Advances on anti-malignant tumor effect of anti-parasitic drugs[J]. Journal of Tropical Medicine, 2021, 21(10): 1361-1363. doi: 10.3969/j.issn.1672-3619.2021.10.029
|
[5] |
吴银娟, 何晴, 殷颖璇, 等. 蠕虫感染与肿瘤发生关系的研究进展[J]. 传染病信息, 2022, 35(1): 84-89. doi: 10.3969/j.issn.1007-8134.2022.01.012WU Y J, HE Q, YIN Y X, et al. Research progress on the relationship between helminth infection and tumorigenesis[J]. Infectious Disease Information, 2022, 35(1): 84-89. doi: 10.3969/j.issn.1007-8134.2022.01.012
|
[6] |
DHEILLY N M, EWALD P W, BRINDLEY P J, et al. Parasite-microbe-host interactions and cancer risk[J]. PLoS Pathog, 2019, 15(8): 1-10.
|
[7] |
李刚, 彭飞, 詹麒, 等. 华支睾吸虫感染背景的肝细胞癌影像组学特征及预测华支睾吸虫感染的性能评价[J]. 中国病原生物学杂志, 2024, 19(9): 1042-1046.LI G, PENG F, ZHAN Q, et al. Imaging omics characteristics of hepatocellular carcinoma with background of Clonorchis sinensis infection and performance evaluation for predicting C. sinensis infection[J]. Journal of Pathogen Biology, 2024, 19(9): 1042-1046.
|
[8] |
SHI Y, YU K, LIANG A, et al. Identification and analysis of the tegument protein and excretory-secretory products of the carcinogenic liver fluke Clonorchis sinensis[J]. Front Microbiol, 2020, 11: 555730. DOI: 10.3389/fmicb.2020.555730.
|
[9] |
张莹, 王玉桂, 时志琪, 等. 蠕虫感染影响宿主胆汁酸代谢的研究进展[J]. 中国寄生虫学与寄生虫病杂志, 2024, 42(5): 648-652.ZHANG Y, WANG Y G, SHI Z Q, et al. Progress of researches on effects of helminth infection on bile acid metabolism[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2024, 42(5): 648-652.
|
[10] |
HAMID H K S. Schistosoma japonicum-associated colorectal cancer: a review[J]. Am J Trop Med Hyg, 2019, 100(3): 501-505.
|
[11] |
王小溪, 何兴, 潘卫庆. 寄生虫感染与癌症[J]. 中国热带医学, 2019, 19(4): 392-395, 400.WANG X X, HE X, PAN W Q. Parasitic infections and cancer[J]. China Tropical Medicine, 2019, 19(4): 392-395, 400.
|
[12] |
张莹舒, 丁昕, 戴洋. 寄生虫抗癌症作用及其机制研究进展[J]. 中国血吸虫病防治杂志, 2024, 36(1): 91-97.ZHANG Y S, DING X, DAIY Y. Anticancer effect of parasites and its underlying mechanisms: a review[J]. Chinese Journal of Schistosomiasis Control, 2024, 36(1): 91-97.
|
[13] |
吕金津, 王巍. 苯并咪唑类驱虫药抗肿瘤作用机制的研究进展[J]. 现代药物与临床, 2020, 35(5): 1045-1048.LYU J J, WANG W. Research progress on mechanism of antiparasitic medications with benzimidazolestructure in treatment of cancer[J]. Drugs & Clinic, 2020, 35(5): 1045-1048.
|
[14] |
SHIMOMURA I, YOKOI A, KOHAMA I, et al. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer[J]. Cancer Lett, 2019, 451: 11-22.
|
[15] |
BAI R Y, STAEDTKE V, APRHYS C M, et al. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme[J]. Neuro-Oncol, 2011, 13(9): 974-982.
|
[16] |
LIMBU K R, CHHETRI R B, OH Y S, et al. Mebendazole impedes the proliferation and migration of pancreatic cancer cells through SK1 inhibition dependent pathway[J]. Molecules, 2022, 27(23): 8127. DOI: 10.3390/molecules27238127.
|
[17] |
DOBROSOTSKAYA I Y, HAMMER G D, SCHTEINGART D E, et al. Mebendazole monotherapy and long-term disease control in metastatic adrenocortical carcinoma[J]. Endocr Pract, 2011, 7(3): e59-62.
|
[18] |
ELAYAPILLAI S, RAMRAJ S, BENBROOK D M, et al. Potential and mechanism of mebendazole for treatment and maintenance of ovarian cancer[J]. Gynecol Oncol, 2021, 160(1): 302-311.
|
[19] |
WANG Z, REN J, DU J, et al. Niclosamide as a promising therapeutic player in human cancer and other diseases[J]. Int J Mol Sci, 2022, 23(24): 16116. DOI: 10.3390/ijms232416116.
|
[20] |
BARBOSA E J, LOBENBERG R, DE ARAUJO G L B, et al. Niclosamide repositioning for treating cancer: challenges and nano-based drug delivery opportunities[J]. Eur J Pharm Biopharm, 2019, 141: 58-69.
|
[21] |
BANSARD L, BOUVET O, MOUTIN E, et al. Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy[J]. Stem Cell Reports, 2022, 17(4): 835-848.
|
[22] |
轩秀晨, 黄卉, 吕桂香. 氯硝柳胺的药理学作用及机制研究进展[J]. 医学综述, 2021, 27(15): 3055-3060. doi: 10.3969/j.issn.1006-2084.2021.15.027XUAN X C, HUANG H, LYU G X. Research Progress in Pharmacological Effects and Mechanisms of Niclosamide[J]. Medical Recapitulate, 2021, 27(15): 3055-3060. doi: 10.3969/j.issn.1006-2084.2021.15.027
|
[23] |
RAI R, DEY D K, BENBROOK D M, et al. Niclosamide causes lysosome-dependent cell death in endometrial cancer cells and tumors[J]. Biomed Pharmacother, 2023, 161: 114422. DOI: 10.1016/j.biopha.2023.114422
|
[24] |
MATHEW M, SIVAPRAKASAM S, DHARMALINGAM-NANDAGOPAL G, et al. Induction of oxidative stress and ferroptosis in triple-negative breast cancer cells by Niclosamide via blockade of the function and expression of SLC38A5 and SLC7A11[J]. Antioxidants(Basel), 2024, 13(3): 291. DOI: 10.3390/antiox13030291.
|
[25] |
KANG H W, KIM J H, LEE D E, et al. Combination therapy of niclosamide with gemcitabine inhibited cell proliferation and apoptosis via Wnt/β-catenin/c-Myc signaling pathway by inducing β-catenin ubiquitination in pancreatic cancer[J]. Cancer Biol Ther, 2023, 24(1): 2272334. DOI: 10.1080/15384047.2023.2272334.
|
[26] |
SCHULTZ C W, NEVLER A. Pyrvinium pamoate: past, present, and future as an anti-cancer drug[J]. Biomedicines, 2022, 10(12): 3249. DOI: 10.3390/biomedicines10123249.
|
[27] |
HUANG S W, SUN M T, LEE W S, et al. Cancer as an infectious disease: a different treatment alternative using a combination of tigecycline and pyrvinium pamoate: an example of breast cancer[J]. J Microbiol Immunol Infect, 2022, 55(1): 51-59.
|
[28] |
JI Y, ZHANG W, SHEN K, et al. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer[J]. Nat Commun, 2023, 14(1): 7794. DOI: 10.1038/s41467-023-43676-3.
|
[29] |
KIM H, JANG B, ZHANG C, et al. Targeting stem cells and dysplastic features with Dual MEK/ERK and STAT3 suppression in gastric carcinogenesis[J]. Gastroenterology, 2024, 166(1): 117-131.
|
[30] |
郑云秋, 屈洪党, 徐志本, 等. 青蒿素对脂多糖活化的小胶质细胞炎症介质释放的影响[J]. 中华全科医学, 2019, 17(7): 1097-1100. doi: 10.16766/j.cnki.issn.1674-4152.000872ZHENG Y Q, QU H D, XU Z B, et al. Effect of artemisinin on the release of inflammatory mediatorsof LPS-activated microglia[J]. Chinese Journal of General Practice, 2019, 17(7): 1097-1100. doi: 10.16766/j.cnki.issn.1674-4152.000872
|
[31] |
HUANG Z, GAN S, ZHUANG X, et al. Artesunate inhibits the cell growth in colorectal cancer by promoting ROS-dependent cell senescence and autophagy[J]. Cells, 2022, 11(16): 2472. DOI: 10.3390/cells11162472.
|
[32] |
MA Z C, CHEN W J, LIU Y D, et al. Artesunate sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy[J]. Autophagy, 2024, 20(3): 541-556.
|
[33] |
OIEN D B, PATHOULAS C L, RAY U, et al. Repurposing quinacrine for treatment-refractory cancer[J]. Semin Cancer Biol, 2021, 68: 21-30.
|
[34] |
JUNG D, KHURANA A, ROY D, et al. Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer[J]. Sci Rep, 2018, 8(1): 2487.
|
[35] |
SUN Q, LIU B, LAN Q, et al. Antimicrobial agent chloroxylenol targets β catenin mediated Wnt signaling and exerts anticancer activity in colorectal cancer[J]. Int J Oncol, 2023, 63(5): 121. DOI: 10.3892/ijo.2023.5569.
|