Prediction of collapse in non-traumatic osteonecrosis of the femoral head based on serum exosome proteomics
-
摘要:
目的 利用生物信息学和机器学习方法,揭示非创伤性股骨头坏死(NONFH)进展中的分子机制及塌陷相关潜在标志物。 方法 选取黑龙江中医药大学附属第二医院2022年3月—2023年5月收治的非创伤性股骨头坏死患者20例,收集早期组(11例,ARCOⅠ期)和塌陷组(9例,ARCO Ⅲc~Ⅳ期)患者的外周血,并分离纯化外泌体。使用透射电镜、粒径分析仪和Western blotting对外泌体的表征进行鉴定;使用液相质谱分析技术(LC-MS/MS)检测血清外泌体蛋白,通过生物信息学联合SVM-RFE算法和LASSO回归模型筛选NONFH塌陷相关标志物。最后,对塌陷蛋白与免疫细胞进行相关性分析。 结果 (1) 塌陷组的高密度脂蛋白胆固醇水平为(1.52±0.36)mmol/L,相较于早期组高密度脂蛋白胆固醇水平[(1.13±0.31)mmol/L],差异有统计学意义(t=2.587, P=0.019),而年龄、胆固醇、低密度脂蛋白胆固醇、碱性磷酸酶和甘油三酯水平差异均无统计学意义(P>0.05);(2)SAA1、C4A和RPS8的AUC分别为0.66、0.89和0.84,具有良好的预测性能,为潜在的NONFH塌陷蛋白。(3)相关性分析提示C4A、SAA1、RPS8可能通过调节多种免疫细胞参与NONFH的发病过程。 结论 C4A、SAA1、RPS8可作为NONFH塌陷发生的预测指标,并且可能通过调节多种免疫细胞参与NONFH的进展, 为未来NONFH的早期干预和临床治疗提供了新视角。 Abstract:Objective This study aimed to elucidate the molecular mechanisms underlying the progression of non-traumatic osteonecrosis of the femoral head (NONFH) and to identify potential biomarkers associated with femoral head collapse using bioinformatics and machine learning approaches. Methods Peripheral blood samples were collected from early-stage (n=11, ARCO Ⅰ stage) and collapsed-stage (n=9, ARCO Ⅲc-Ⅳ stage) NONFH patients treated at the Second Affiliated Hospital of Heilongjiang University of Chinese Medicine between March 2022 and May 2023. Exosomes were isolated and purified from serum and characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Serum exosomal proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Biomarkers associated with NONFH collapse were screened using bioinformatics, support vector machine-recursive feature elimination (SVM-RFE) algorithm, and least absolute shrinkage and selection operator (LASSO) regression model. Correlation analysis was performed between collapse-associated proteins and immune cells. Results (1) The cholesterol level in the collapsed-stage group [(1.52±0.36) mmol/L] was significantly higher than that in the early-stage group [(1.13±0.31) mmol/L, t=2.587, P=0.019]. However, no significant differences were observed in age, total cholesterol, low-density lipoprotein cholesterol, alkaline phosphatase, or triglyceride levels (P>0.05). (2) The area under the curve (AUC) values for the candidate biomarkers SAA1, C4A, and RPS8 were 0.66, 0.89, and 0.84, respectively, demonstrating good predictive potential. (3) Correlation analysis indicated that C4A, SAA1, and RPS8 might be involved in NONFH pathogenesis by regulating various immune cells. Conclusion C4A, SAA1, and RPS8 can serve as predictive biomarkers for predicting femoral head collapse in NONFH and may contribute to disease progression through immune cell modulation. These findings provide new insights into early intervention and clinical treatment strategies for NONFH. -
表 1 早期组和塌陷组一般临床资料比较
Table 1. Comparison of general clinical data between early group and collapsed group
组别 例数 年龄
(x±s,岁)性别
(男/女,例)胆固醇
(x±s,mmol/L)低密度脂蛋白胆
固醇(x±s,mmol/L)高密度脂蛋白胆
固醇(x±s,mmol/L)碱性磷酸酶
(x±s,U/L)甘油三酯
[M(P25, P75),mmol/L]早期组 11 53.09±8.68 10/1 4.60±1.55 2.78±1.32 1.13±0.31 76.63±16.27 1.81(0.70, 3.06) 塌陷组 9 48.44±11.34 6/3 5.17±0.76 2.93±0.59 1.52±0.36 78.22±12.07 2.80(1.28, 3.85) 统计量 1.039a 1.074a 0.344a 2.587a 0.284a -0.570c P值 0.312 0.285b 0.300 0.736 0.019 0.780 0.569 注:a为t值,c为Z值,b为采用Fisher精确检验。 -
[1] 徐云云, 鲁娟, 黄聪聪, 等. 股骨头坏死全髋置换术后谵妄综合征情况调查及影响因素分析[J]. 中华全科医学, 2023, 21(8): 1425-1428, 1436. doi: 10.16766/j.cnki.issn.1674-4152.003137XU Y Y, LU J, HUANG C C, et al. Investigation of delirium syndrome and analysis of influencing factors after total hip replacement for femoral head necrosis[J]. Chinese Journal of General Practice, 2023, 21(8): 1425-1428, 1436. doi: 10.16766/j.cnki.issn.1674-4152.003137 [2] 封潇添, 马剑雄, 王岩, 等. 基于PI3K/AKT信号通路探讨中药治疗激素性股骨头坏死的研究进展[J]. 世界中医药, 2024, 19(15): 2363-2370.FENG X T, MA J X, WANG Y, et al. Research progress on the treatment of steroid-induced femoral head necrosis with traditional Chinese medicine based on the PI3K/AKT signaling pathway[J]. World Chinese Medicine, 2024, 19(15): 2363-2370. [3] 张杰, 曹建泽, 刘永飞, 等. 激素性股骨头坏死发病机制的研究进展[J]. 中国矫形外科杂志, 2024, 32(7): 620-624, 630.ZHANG J, CAO J Z, LIU Y F, et al. Research progress on the pathogenesis of steroid-induced femoral head necrosis[J]. Chinese Journal of Orthopaedic Surgery, 2024, 32(7): 620-624, 630. [4] LIU M, ZHAO G, WEI B F. Attenuated serum vasoactive intestinal peptide concentrations are correlated with disease severity of non-traumatic osteonecrosis of femoral head[J]. J Orthop Surg Res, 2021, 16(1): 325. DOI: 10.1186/s13018-021-02486-3. [5] 王晶晶, 唐朋, 钱丹, 等. 142例人工全髋关节置换术后假体周围感染的病原菌分布和耐药性分析[J]. 重庆医科大学学报, 2022, 47(8): 989-993.WANG J J, TANG P, QIAN D, et al. Pathogen distribution and antibiotic resistance analysis in 142 cases of prosthetic joint infection after total hip arthroplasty[J]. Journal of Chongqing Medical University, 2022, 47(8): 989-993. [6] 乔梁, 姚尧, 吴登先, 等. 贫血对人工全髋关节置换术患者围术期下肢深静脉血栓形成的影响[J]. 中国修复重建外科杂志, 2024, 38(5): 570-575.QIAO L, YAO Y, WU D X, et al. Effect of anemia on perioperative lower extremity deep vein thrombosis in patients undergoing total hip arthroplasty[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(5): 570-575. [7] 卢克鹏, 刘彩虹, 毕莹. 预防性抗凝持续时间对全髋/膝关节置换术后静脉血栓形成的影响[J]. 中国临床药理学与治疗学, 2023, 28(11): 1269-1274.LU K P, LIU C H, BI Y. Effect of the duration of prophylactic anticoagulation on venous thromboembolism after total hip/knee arthroplasty[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1269-1274. [8] 黄嘉燕, 梅钰婷, 胡春梅. 间充质干细胞来源外泌体在骨组织修复中的应用[J]. 南京医科大学学报(自然科学版), 2024, 44(11): 1590-1598.HUANG J Y, MEI Y T, HU CH M. Application of mesenchymal stem cell-derived exosomes in bone tissue repair[J]. Journal of Nanjing Medical University (Natural Science), 2024, 44(11): 1590-1598. [9] 高洁, 李江艳, 黄桦, 等. 肝癌细胞来源的外泌体对其增殖、凋亡及自噬的生物学行为影响[J]. 中华全科医学, 2024, 22(6): 936-939, 974. doi: 10.16766/j.cnki.issn.1674-4152.003538GAO J, LI J Y, HUANG H, et al. Effect of exosomes derived from liver cancer cells on their proliferation, apoptosis, and autophagy[J]. Chinese Journal of General Practice, 2024, 22(6): 936-939, 974. doi: 10.16766/j.cnki.issn.1674-4152.003538 [10] KOK V C, YU C C. Cancer-derived exosomes: their role in cancer biology and biomarker development[J]. Int J Nanomedicine, 2020, 15: 8019-8036. [11] DUTTA S, HORNUNG S, TAHA H B, et al. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges[J]. Acta Neuropathol, 2023, 145(5): 515-540. [12] 毕煦昆, 郭成龙, 赵建栋, 等. 骨髓间充质干细胞来源外泌体及其相关信号通路在激素性股骨头坏死中作用的研究进展[J]. 中国生物工程杂志, 2022, 42(10): 70-79.BI X K, GUO C L, ZHAO J D, et al. Research progress on the role of bone marrow mesenchymal stem cell-derived exosomes and their related signaling pathways in steroid-induced femoral head necrosis[J]. Chinese Journal of Biotechnology, 2022, 42(10): 70-79. [13] ZHU H Y, GAO Y C, WANG Y, et al. Circulating exosome levels in the diagnosis of steroid-induced osteonecrosis of the femoral head[J]. Bone Joint Res, 2016, 5(6): 276-279. [14] 中华医学会骨科分会显微修复学组, 中国修复重建外科专业委员会骨缺损及骨坏死学组. 成人股骨头坏死诊疗标准专家共识(2012年版)[J]. 中国医学前沿杂志(电子版), 2012, 4(11): 51-56.Microscopic Repair Group, Orthopedic Branch of Chinese Medical Association, Bone Defect and Osteonecrosis Group, Chinese Professional Committee of Reconstructive and Reconstructive Surgery. Expert Consensus on Diagnosis and Treatment Standards for Adult Femoral Head Necrosis (2012 Edition)[J]. Chinese Journal of Medical Frontier (Electronic Edition), 2012, 4(11): 51-56. [15] ZHENG G S, QIU X, WANG B J, et al. Relationship between blood flow and collapse of nontraumatic osteonecrosis of the femoral head[J]. J Bone Joint Surg Am, 2022, 104(Suppl 2): 13-18. [16] ANSARI S, GOYAL T, KALIA R B, et al. Prediction of collapse in femoral head osteonecrosis: role of volumetric assessment[J]. Hip Int, 2022, 32(5): 596-603. [17] WU H Y, CHENG K M, TONG L J, et al. Knowledge structure and emerging trends on osteonecrosis of the femoral head: a bibliometric and visualized study[J]. J Orthop Surg Res, 2022, 17(1): 194. DOI: 10.1186/s13018-022-03068-7. [18] TANG Y C, WANG S H, YI Q, et al. High-density Lipoprotein Cholesterol is negatively correlated with bone mineral density and has potential predictive value for bone loss[J]. Lipids Health Dis, 2021, 20(1): 75. DOI: 10.1186/s12944-021-01497-7. [19] BOYCE B F. Advances in the regulation of osteoclasts and osteoclast functions[J]. J Dent Res, 2013, 92(10): 860-867. [20] WANG T, HE C. TNF-α and IL-6: the link between immune and bone system[J]. Curr Drug Targets, 2020, 21(3): 213-227. [21] MAZIDI M, MIKHAILIDIS D P, BANACH M. Associations between risk of overall mortality, cause-specific mortality and level of inflammatory factors with extremely low and high high-density lipoprotein cholesterol levels among American adults[J]. Int J Cardiol, 2019, 276: 242-247. [22] TANG M S, BOWCUTT R, LEUNG J M, et al. Integrated analysis of biopsies from inflammatory bowel disease patients identifies SAA1 as a link between mucosal microbes with TH17 and TH22 cells[J]. Inflamm Bowel Dis, 2017, 23(9): 1544-1554. [23] KO Y L, HSU L A, WU S, et al. CRP and SAA1 haplotypes are associated with both C-reactive protein and serum amyloid a levels: role of suppression effects[J]. Mediators Inflamm, 2016, 2016: 5830361. DOI: 10.1155/2016/5830361. [24] 刘雄, 曾平, 秦刚, 等. 系统性红斑狼疮合并激素性股骨头坏死中医证型的血清差异蛋白质组学研究[J]. 中华中医药学刊, 2018, 36(11): 2662-2666.LIU X, ZENG P, QIN G, et al. Serum differential proteomics study of Traditional Chinese Medicine syndrome types in systemic lupus erythematosus complicated with steroid-induced femoral head necrosis[J]. Chinese Journal of Traditional Medical Science and Technology, 2018, 36(11): 2662-2666. [25] BARNUM S R. C4a: an anaphylatoxin in name only[J]. J Innate Immun, 2015, 7(4): 333-339. [26] 徐会圃, 李毅, 刘长梅, 等. 急诊PCI术中冠脉内应用替罗非班对急性心肌梗死患者血清补体4a及心肌灌注水平的影响[J]. 中国老年学杂志, 2016, 36(6): 1335-1337.XU H P, LI Y, LIU C M, et al. Effect of intracoronary administration of tirofiban during emergency PCI on serum complement 4a and myocardial perfusion in patients with acute myocardial infarction[J]. Chinese Journal of Geriatrics, 2016, 36(6): 1335-1337. [27] IGNATIUS A, SCHOENGRAF P, KREJA L, et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β[J]. J Cell Biochem, 2011, 112(9): 2594-2605. [28] CALDERONE A, LATELLA D, CARDILE D, et al. The role of neuroinflammation in shaping neuroplasticity and recovery outcomes following traumatic brain injury: a systematic review[J]. Int J Mol Sci, 2024, 25(21): 11708. DOI: 10.3390/ijms252111708. [29] WEI Q, LI K, SU L, et al. Plasma proteomics implicate glutamic oxaloacetic transaminases as potential markers for acute myocardial infarction[J]. J Proteomics, 2024, 308: 105286. DOI: 10.1016/j.jprot. -