[1] |
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119. DOI: 10.1016/j.diabres.2021.109119.
|
[2] |
ZHANG X M, SHEN Q Q. Application and management of continuous glucose monitoring in diabetic Kidney disease[J]. World J Diabetes, 2024, 15(4): 591-597. doi: 10.4239/wjd.v15.i4.591
|
[3] |
KIRKMAN M S, SACKS D B. Glycated albumin: added value or redundancy in diabetes care?[J]. Clin Chem, 2022, 68(3): 379-381.
|
[4] |
SACKS D B, ARNOLD M, BAKRIS G L, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus[J]. Diabetes Care, 2023, 46(10): e151-e199. doi: 10.2337/dci23-0036
|
[5] |
DUNN T C, XU Y J, BERGENSTAL R M, et al. Personalized glycated hemoglobin in diabetes management: closing the gap with glucose management indicator[J]. Diabetes Technol Ther, 2023, 25(S3): S65-S74. doi: 10.1089/dia.2023.0146
|
[6] |
MANOSROI W, PHIMPHILAI M, WAISAYANAND N, et al. Glycated hemoglobin variability and the risk of cardiovascular events in patients with prediabetes and type 2 diabetes mellitus: a post-hoc analysis of a prospective and multicenter study[J]. J Diabetes Investig, 2023, 14(12): 1391-1400. doi: 10.1111/jdi.14073
|
[7] |
KIRKMAN M S, SACKS D B. Glycated albumin: added value or redundancy in diabetes care?[J]. Clin Chem, 2022, 68(3): 379-381. doi: 10.1093/clinchem/hvab261
|
[8] |
AJJAN R A, BATTELINO T, COS X, et al. Continuous glucose monitoring for the routine care of type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2024, 20(7): 426-440. doi: 10.1038/s41574-024-00973-1
|
[9] |
中华医学会糖尿病学分会. 中国血糖监测临床应用指南(2021年版)[J]. 中华糖尿病杂志, 2021, 13(10): 936-948.Diabetes Society of Chinese Medical Association. Clinical application guideline for blood glucose monitoring in China (2021 edition)[J]. Chinese Journal of Diabetes, 2021, 13(10): 936-948.
|
[10] |
SEIDU S, KUNUTSOR S K, AJJAN R A, et al. Efficacy and safety of continuous glucose monitoring and intermittently scanned continuous glucose monitoring in patients with type 2 diabetes: a systematic review and meta-analysis of interventional evidence[J]. Diabetes Care, 2024, 47(1): 169-179. doi: 10.2337/dc23-1520
|
[11] |
ELSAYED N A, ALEPPO G, ARODA V R, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023[J]. Diabetes Care, 2023, 46(Supplement_1): S19-S40. doi: 10.2337/dc23-S002
|
[12] |
MITA T, KATAKAMI N, OKADA Y, et al. Continuous glucose monitoring-derived time in range and CV are associated with altered tissue characteristics of the carotid artery wall in people with type 2 diabetes[J]. Diabetologia, 2023, 66(12): 2356-2367. doi: 10.1007/s00125-023-06013-3
|
[13] |
DE MEULEMEESTER J, CHARLEER S, VISSER M M, et al. The association of chronic complications with time in tight range and time in range in people with type 1 diabetes: a retrospective cross-sectional real-world study[J]. Diabetologia, 2024, 67(8): 1527-1535. doi: 10.1007/s00125-024-06171-y
|
[14] |
WAKASUGI S, MITA T, KATAKAMI N, et al. Associations between continuous glucose monitoring-derived metrics and diabetic retinopathy and albuminuria in patients with type 2 diabetes[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e001923. DOI: 10.1136/bmjdrc-2020-001923.
|
[15] |
CHANG K C, PAI Y W, LIN C H, et al. Glycemic variability' s impact on painful diabetic peripheral neuropathy in type 2 diabetes patients[J]. Sci Rep, 2024, 14(1): 22276. DOI: 10.1038/s41598-024-73472-y.
|
[16] |
吴道爱, 金国玺, 时照明, 等. 葡萄糖在目标范围内时间和糖尿病足的相关性研究[J]. 中华全科医学, 2024, 22(3): 414-417. doi: 10.16766/j.cnki.issn.1674-4152.003415WU D A, JIN G X, SHI Z M, et al. Correlation between time in range and diabetic foot in patients with type 2 diabetes mellitus[J]. Chinese Journal of General Practice, 2024, 22(3): 414-417. doi: 10.16766/j.cnki.issn.1674-4152.003415
|
[17] |
ZHANG L, SUN X X, TIAN Q S, et al. Research progress on the association between glycemic variability index derived from CGM and cardiovascular disease complications[J]. Acta Diabetol, 2024, 61(6): 679-692. doi: 10.1007/s00592-024-02241-0
|
[18] |
KLIMONTOV V V, SAIK O V, KORBUT A I, et al. Glucose variability: how does it work?[J]. Int J Mol Sci, 2021, 22(15): 7783. DOI: 10.3390/ijms22157783.
|
[19] |
MA C F, LIU Y W, HE S L, et al. Association between glucose fluctuation during 2-hour oral glucose tolerance test, inflammation and oxidative stress markers, and β-cell function in a Chinese population with normal glucose tolerance[J]. Ann Transl Med, 2021, 9(4): 327. DOI: 10.21037/atm-20-6119.
|
[20] |
CHEN X T, SHI C Z, WANG Y, et al. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes[J]. Front Physiol, 2022, 13: 952445. DOI: 10.3389/fphys.2022.952445.
|
[21] |
IQBAL A, PRINCE L R, NOVODVORSKY P, et al. Effect of hypoglycemia on inflammatory responses and the response to low-dose endotoxemia in humans[J]. J Clin Endocrinol Metab, 2019, 104(4): 1187-1199. doi: 10.1210/jc.2018-01168
|
[22] |
YE J W, DENG J J, LIANG W Q, et al. Time in range assessed by capillary blood glucose in relation to insulin sensitivity and beta-cell function in patients with type 2 diabetes mellitus: a cross-sectional study in China[J]. J Diabetes Investig, 2022, 13(11): 1825-1833. doi: 10.1111/jdi.13876
|
[23] |
XU S Y, LI K, ZHANG Z, et al. Association between time in range, a novel measurement of glycemic control and islet secretory function in chinese patients with type 2 diabetes mellitus: an observational study[J]. Diabetes Res Clin Pract, 2021, 173: 108684. DOI: 10.1016/j.diabres.2021.108684.
|
[24] |
ZHANG L Y, GUO K Y, TIAN Q, et al. The continuous spectrum of glycaemic variability changes with pancreatic islet function: a multicentre cross-sectional study in China[J]. Diabetes Metab Res Rev, 2022, 38(8): e3579. DOI: 10.1002/dmrr.3579.
|
[25] |
FUHRI SNETHLAGE C M, MCDONALD T J, ORAM R D, et al. Residual β-cell function is associated with longer time in range in individuals with type 1 diabetes[J]. Diabetes Care, 2024, 47(7): 1114-1121. doi: 10.2337/dc23-0776
|
[26] |
LIU W, MA Y K, CAI X L, et al. Preserved C-peptide secretion is associated with higher time in range (TIR) on intermittently scanned continuous glucose monitoring in Chinese adults with type 1 diabetes[J]. Endocr Connect, 2022, 11(11): e220244. DOI: 10.1530/EC-22-0244.
|
[27] |
TANAKA K, OKADA Y, UEMURA F, et al. Associations between time in range and insulin secretory capacity in Japanese patients with type 2 diabetes[J]. Sci Rep, 2024, 14(1): 12910. DOI: 10.1038/s41598-024-63678-5.
|
[28] |
WRONKA M, KRZEMIÑSKA J, MŁYNARSKA E, et al. The influence of lifestyle and treatment on oxidative stress and inflammation in diabetes[J]. Int J Mol Sci, 2022, 23(24): 15743. DOI: 10.3390/ijms232415743.
|
[29] |
XU X Z, XU W, ZHUO Q Q, et al. The efficacy and safety of dapagliflozin combined with oral hypoglycemic agents in patients with type 2 diabetes: a systematic review and meta-analysis[J]. Ann Palliat Med, 2022, 11(3): 1028-1037. doi: 10.21037/apm-22-121
|
[30] |
沈小静, 李昉, 华会, 等. 二甲双胍联合西格列汀治疗2型糖尿病患者的效果及对胰岛功能的作用[J]. 西部医学, 2024, 36(10): 1475-1479.SHEN X J, LI F, HUA H, et al. The effect of Metformin combined with Sitagliptin in treatment of type 2 diabetes patients and its effect on islet function[J]. Medical Journal of West China, 2024, 36(10): 1475-1479.
|
[31] |
NOMOTO H, FURUSAWA S, YOKOYAMA H, et al. Improvement of beta-cell function after switching from DPP-4 inhibitors to oral semaglutide: switch-sema2 post hoc analysis[J]. J Clin Endocrinol Metab, 2024: dgae213. DOI: 10.1210/clinem/dgae213.
|
[32] |
GRACE T, SALYER J. Use of real-time continuous glucose monitoring improves glycemic control and other clinical outcomes in type 2 diabetes patients treated with less intensive therapy[J]. Diabetes Technol Ther, 2022, 24(1): 26-31. doi: 10.1089/dia.2021.0212
|
[33] |
RETNAKARAN R, PU J, EMERY A, et al. Determinants of sustained stabilization of beta-cell function following short-term insulin therapy in type 2 diabetes[J]. Nat Commun, 2023, 14(1): 4514. DOI: 10.1038/s41467-023-40287-w.
|
[34] |
CHEN P, SUN Q, XU L Y, et al. Patients with type 2 diabetes who achieve reduced postprandial glucose levels during insulin intensive therapy may have a better recovery of β-cell function[J]. Diabetes Res Clin Pract, 2024, 215: 111805. DOI: 10.1016/j.diabres.2024.111805.
|
[35] |
GUO K Y, LI J Q, ZHANG L Y, et al. Comparing the effectiveness of continuous subcutaneous insulin infusion with multiple daily insulin injection for patients with type 1 diabetes mellitus evaluated by retrospective continuous glucose monitoring: a real-world data analysis[J]. Front Public Health, 2022, 10: 990281. DOI: 10.3389/fpubh.2022.990281.
|
[36] |
YANG B, HAN L, WANG Y, et al. Effectiveness of continuous subcutaneous insulin infusion versus multiple daily injections on glycaemic control among older adults with type 2 diabetes: protocol for systematic review and meta-analysis[J]. BMJ Open, 2023, 13(1): e063161. DOI: 10.1136/bmjopen-2022-063161.
|
[37] |
YU Y, GROTH S W. Use of continuous glucose monitoring in patients following bariatric surgery: a scoping review[J]. Obes Surg, 2023, 33(8): 2573-2582. doi: 10.1007/s11695-023-06704-1
|
[38] |
BOUGHTON C K, HOVORKA R. New closed-loop insulin systems[J]. Diabetologia, 2021, 64(5): 1007-1015. doi: 10.1007/s00125-021-05391-w
|
[39] |
NAKAMURA T, FUJIKURA J, ANAZAWA T, et al. Reduced glycemic variability and flexible graft function after islet transplantation: a case report[J]. J Diabetes Investig, 2020, 11(6): 1677-1680. doi: 10.1111/jdi.13292
|
[40] |
PARK Y M, YANG C M, CHO H Y. Therapeutic effects of insulin-producing human umbilical cord-derived mesenchymal stem cells in a type 1 diabetes mouse model[J]. Int J Mol Sci, 2022, 23(13): 6877. DOI: 10.3390/ijms23136877.
|