留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线粒体-炎症小体通路在慢性肝脏疾病中的作用

吴欢 伍龙 张宝芳

吴欢, 伍龙, 张宝芳. 线粒体-炎症小体通路在慢性肝脏疾病中的作用[J]. 中华全科医学, 2025, 23(4): 651-655. doi: 10.16766/j.cnki.issn.1674-4152.003972
引用本文: 吴欢, 伍龙, 张宝芳. 线粒体-炎症小体通路在慢性肝脏疾病中的作用[J]. 中华全科医学, 2025, 23(4): 651-655. doi: 10.16766/j.cnki.issn.1674-4152.003972
WU Huan, WU Long, ZHANG Baofang. The role of the mitochondria-inflammasome pathway in the progression of chronic liver disease[J]. Chinese Journal of General Practice, 2025, 23(4): 651-655. doi: 10.16766/j.cnki.issn.1674-4152.003972
Citation: WU Huan, WU Long, ZHANG Baofang. The role of the mitochondria-inflammasome pathway in the progression of chronic liver disease[J]. Chinese Journal of General Practice, 2025, 23(4): 651-655. doi: 10.16766/j.cnki.issn.1674-4152.003972

线粒体-炎症小体通路在慢性肝脏疾病中的作用

doi: 10.16766/j.cnki.issn.1674-4152.003972
基金项目: 

2024年度贵州省卫生健康委员会科技基金项目 gzwkj2024-10

贵州省科技计划项目 黔科合基础-ZK[2024]一般210

2023年度贵州省卫生健康委员会科技基金项目 gzwkj2023-042

详细信息
    通讯作者:

    张宝芳,E-mail:zhangbaofang@gmc.edu.cn

  • 中图分类号: R575.2

The role of the mitochondria-inflammasome pathway in the progression of chronic liver disease

  • 摘要: 慢性肝脏疾病(chronic liver disease,CLD)是全球范围内一个严重的健康问题,其发病率和致死率不断上升。在慢性肝脏疾病的进展中,线粒体功能障碍和炎症小体通路的激活起着关键作用。线粒体作为细胞的能量中心,不仅参与能量代谢,还在细胞凋亡、氧化应激和炎症等重要过程中发挥重要作用。而炎症小体则是一种细胞内多蛋白质复合物,对细胞应对病原体和细胞应激反应起着关键作用。目前,越来越多的研究将线粒体与炎症小体相结合,发现线粒体在炎症小体激活中具有重要作用。受损的线粒体可以释放出一些信号分子,这些分子可以促使炎症小体的形成和激活,促进白细胞介素-1β(IL-1β)、白细胞介素-18(IL-18)、肿瘤坏死因子α(TNF-α)等炎症因子的释放,线粒体相关的蛋白质也可以直接参与炎症小体的组装和激活过程。关于线粒体和炎症小体在慢性肝脏疾病中的关系,目前的研究取得了一些进展。本文旨在阐述线粒体和炎症小体的结构、激活信号及通路、调节机制,以及它们与慢性肝脏疾病之间关系的研究进展,以期为慢性肝脏疾病的治疗提供新的方向和靶点。

     

  • 图  1  慢性肝损伤过程中线粒体调控炎症小体激活的机制

    Figure  1.  The mechanism of mitochondrial regulation of inflammasome activation during chronic liver injury

  • [1] MA X W, MCKEEN T, ZHANG J H, et al. Role and mechanisms of mitophagy in liver diseases[J]. Cells, 2020, 9(4): 837. DOI: 10.3390/cells9040837.
    [2] WANG J X, SUN Z W, XIE J R, et al. Inflammasome and pyroptosis in autoimmune liver diseases[J]. Front Immunol, 2023, 14: 1150879. DOI: 10.3389/fimmu.2023.1150879.
    [3] BI Y G, LIU S L, QIN X, et al. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner[J]. J Adv Res, 2024, 55: 45-60. doi: 10.1016/j.jare.2023.02.012
    [4] WU N N, WANG L F, WANG L, et al. Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis[J]. Exp Mol Med, 2023, 55(1): 269-280. doi: 10.1038/s12276-022-00923-9
    [5] AKBAL A, DERNST A, LOVOTTI M, et al. How location and cellular signaling combine to activate the NLRP3 inflammasome[J]. Cell Mol Immunol, 2022, 19(11): 1201-1214. doi: 10.1038/s41423-022-00922-w
    [6] SZABO G, PETRASEK J. Inflammasome activation and function in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(7): 387-400. doi: 10.1038/nrgastro.2015.94
    [7] QU C B, ZHANG S S, LI Y, et al. Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections[J]. Rev Med Virol, 2019, 29(5): e2075. DOI: 10.1002/rmv.2075.
    [8] XIE W H, DING J, XIE X X, et al. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation[J]. Inflamm Res, 2020, 69(7): 683-696. doi: 10.1007/s00011-020-01351-z
    [9] YOUNOSSI Z M. Non-alcoholic fatty liver disease: a global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544. doi: 10.1016/j.jhep.2018.10.033
    [10] ASRANI S K, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. doi: 10.1016/j.jhep.2018.09.014
    [11] GONG F, GAO L, DING T. IDH2 protects against nonalcoholic steatohepatitis by alleviating dyslipidemia regulated by oxidative stress[J]. Biochem Biophys Res Commun, 2019, 514(3): 593-600. doi: 10.1016/j.bbrc.2019.04.069
    [12] ACÍN-PÉREZ R, IBORRA S, MARTÍ-MATEOS Y, et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity[J]. Nat Metab, 2020, 2(9): 974-988. doi: 10.1038/s42255-020-00273-8
    [13] ZHONG Z Y, LIANG S, SANCHEZ-LOPEZ E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717): 198-203. doi: 10.1038/s41586-018-0372-z
    [14] ZHANG H Z, SHI H M, XIE W, et al. Subacute ruminal acidosis induces pyroptosis via the mitophagy-mediated NLRP3 inflammasome activation in the livers of dairy cows fed a high-grain diet[J]. J Dairy Sci, 2024, 107(6): 4092-4107. doi: 10.3168/jds.2023-23718
    [15] ZHANG N P, LIU X J, XIE L, et al. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis[J]. Lab Invest, 2019, 99(6): 749-763. doi: 10.1038/s41374-018-0177-6
    [16] CHEN Y H, MA K F. NLRC4 inflammasome activation regulated by TNF-α promotes inflammatory responses in nonalcoholic fatty liver disease[J]. Biochem Biophys Res Commun, 2019, 511(3): 524-530. doi: 10.1016/j.bbrc.2019.02.099
    [17] ZHANG J L, ZHAO Y J, WANG S H, et al. CREBH alleviates mitochondrial oxidative stress through SIRT3 mediating deacetylation of MnSOD and suppression of Nlrp3 inflammasome in NASH[J]. Free Radic Biol Med, 2022, 190: 28-41. doi: 10.1016/j.freeradbiomed.2022.07.018
    [18] TIAN C, MIN X W, ZHAO Y X, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77(6): 1491-1503. doi: 10.1016/j.jhep.2022.07.017
    [19] JIN K P, SHI Y Z, ZHANG H T, et al. A TNFα/Miz1-positive feedback loop inhibits mitophagy in hepatocytes and propagates non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 79(2): 403-416. doi: 10.1016/j.jhep.2023.03.039
    [20] YU X Y, HAO M, LIU Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy[J]. Eur J Pharmacol, 2019, 864: 172715. DOI: 10.1016/j.ejphar.2019.172715.
    [21] MENG Z Q, GAO M, WANG C Y, et al. Apigenin alleviated high-fat-diet-induced hepatic pyroptosis by mitophagy-ROS-CTSB-NLRP3 pathway in mice and AML12 cells[J]. J Agric Food Chem, 2023, 71(18): 7032-7045. doi: 10.1021/acs.jafc.2c07581
    [22] TORRES S, SEGALÉS P, GARCÍA-RUIZ C, et al. Mitochondria and the NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis[J]. Cells, 2022, 11(9): 1475. DOI: 10.3390/cells11091475.
    [23] KAI J, YANG X, WANG Z M, et al. Oroxylin a promotes PGC-1alpha/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease[J]. Free Radic Biol Med, 2020, 153: 89-102. doi: 10.1016/j.freeradbiomed.2020.03.031
    [24] GAO Y, XU G, MA L, et al. Icariside Ⅰ specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity[J]. Cell Commun Signal, 2021, 19(1): 13. DOI: 10.1186/s12964-020-00647-1.
    [25] LIN L, CHEN Y Y, LI Q, et al. Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity[J]. J Ethnopharmacol, 2022, 285: 114796. DOI: 10.1016/j.jep.2021.114796.
    [26] SHI W, LIU T T, YANG H J, et al. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117063. DOI: 10.1016/j.jep.2023.117063.
    [27] WANG Y, ZHAO Y, WANG Z C, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS[J]. Front Immunol, 2021, 12: 652782. DOI: 10.3389/fimmu.2021.652782.
    [28] WANG Q, JIA F B, GUO C, et al. PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB(1)-induced liver injury in mice[J]. Food Chem Toxicol, 2022, 164: 113043. DOI: 10.1016/j.fct.2022.113043.
    [29] SHAN S L, SHEN Z Y, ZHANG C Q, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. DOI: 10.1016/j.bcp.2019.113643.
    [30] ZHU D J, ZHONG J, GONG X F, et al. Augmenter of liver regeneration reduces mitochondria-derived ROS and NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy in ischemia-reperfusion-induced renal tubular injury[J]. Apoptosis, 2023, 28(3-4): 335-347. doi: 10.1007/s10495-022-01794-1
    [31] ZHANG Q, HU J P, MAO A K, et al. Ginsenoside RB1 alleviated concanavalin A-induced hepatocyte pyroptosis by activating mitophagy[J]. Food Funct, 2023, 14(8): 3793-3803. doi: 10.1039/D2FO03130B
    [32] CHANG H F, YANG F, BAI H, et al. Molybdenum and/or cadmium induce NLRP3 inflammasome production by causing mitochondria-associated endoplasmic reticulum membrane dysfunction in sheep hepatocytes[J]. Chem Biol Interact, 2023, 382: 110617. DOI: 10.1016/j.cbi.2023.110617.
    [33] LIU Z N, WANG X F, LI L, et al. Hydrogen sulfide protects against paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation[J]. Oxid Med Cell Longev, 2020, 2020: 6325378. DOI: 10.1155/2020/6325378.
    [34] ZHAO Y, WANG Z C, FENG D C, et al. P66shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species[J]. Theranostics, 2019, 9(5): 1510-1522. doi: 10.7150/thno.29620
    [35] CHEON S Y, KIM M Y, KIM J, et al. Hyperammonemia induces microglial NLRP3 inflammasome activation via mitochondrial oxidative stress in hepatic encephalopathy[J]. Biomed J, 2023, 46(5): 100593. DOI: 10.1016/j.bj.2023.04.001.
    [36] LI H L, ZHANG R T, HU Y Y, et al. Axitinib attenuates the progression of liver fibrosis by restoring mitochondrial function[J]. Int Immunopharmacol, 2023, 122: 110555. DOI: 10.1016/j.intimp.2023.110555.
    [37] WU Y, HAO C, LIU X F, et al. MitoQ protects against liver injury induced by severe burn plus delayed resuscitation by suppressing the mtDNA-NLRP3 axis[J]. Int Immunopharmacol, 2020, 80: 106189. DOI: 10.1016/j.intimp.2020.106189.
    [38] ZHAO H J, ZHANG Y M, ZHANG Y T, et al. The role of NLRP3 inflammasome in hepatocellular carcinoma[J]. Front Pharmacol, 2023, 14: 1150325. DOI: 10.3389/fphar.2023.1150325.
    [39] 耿西林, 张颖, 李浩, 等. 线粒体动力相关蛋白DRP1对肝癌细胞糖代谢的调控作用研究[J]. 中华全科医学, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270

    GENG X L, ZHANG Y, LI H, et al. Regulation of mitochondrial dynamic-related protein 1 on glucose metabolism in liver cancer cells[J]. Chinese Journal of General Practice, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270
    [40] LI W H, LI Y J, SIRAJ S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice[J]. Hepatology, 2019, 69(2): 604-621. doi: 10.1002/hep.30191
    [41] ZHENG P P, XIAO W L, ZHANG J P, et al. The role of AIM2 in human hepatocellular carcinoma and its clinical significance[J]. Pathol Res Pract, 2023, 245: 154454. DOI: 10.1016/j.prp.2023.154454.
    [42] SHI X L, WANG L, REN L F, et al. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells[J]. Phytother Res, 2019, 33(5): 1413-1425. doi: 10.1002/ptr.6332
    [43] LIU Y, GUO Z W, LI J, et al. Insight into the regulation of NLRP3 inflammasome activation by mitochondria in liver injury and the protective role of natural products[J]. Biomed Pharmacother, 2022, 156: 113968. DOI: 10.1016/j.biopha.2022.113968.
  • 加载中
图(1)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 网络出版日期:  2025-06-30

目录

    /

    返回文章
    返回