[1] |
MA X W, MCKEEN T, ZHANG J H, et al. Role and mechanisms of mitophagy in liver diseases[J]. Cells, 2020, 9(4): 837. DOI: 10.3390/cells9040837.
|
[2] |
WANG J X, SUN Z W, XIE J R, et al. Inflammasome and pyroptosis in autoimmune liver diseases[J]. Front Immunol, 2023, 14: 1150879. DOI: 10.3389/fimmu.2023.1150879.
|
[3] |
BI Y G, LIU S L, QIN X, et al. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner[J]. J Adv Res, 2024, 55: 45-60. doi: 10.1016/j.jare.2023.02.012
|
[4] |
WU N N, WANG L F, WANG L, et al. Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis[J]. Exp Mol Med, 2023, 55(1): 269-280. doi: 10.1038/s12276-022-00923-9
|
[5] |
AKBAL A, DERNST A, LOVOTTI M, et al. How location and cellular signaling combine to activate the NLRP3 inflammasome[J]. Cell Mol Immunol, 2022, 19(11): 1201-1214. doi: 10.1038/s41423-022-00922-w
|
[6] |
SZABO G, PETRASEK J. Inflammasome activation and function in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(7): 387-400. doi: 10.1038/nrgastro.2015.94
|
[7] |
QU C B, ZHANG S S, LI Y, et al. Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections[J]. Rev Med Virol, 2019, 29(5): e2075. DOI: 10.1002/rmv.2075.
|
[8] |
XIE W H, DING J, XIE X X, et al. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation[J]. Inflamm Res, 2020, 69(7): 683-696. doi: 10.1007/s00011-020-01351-z
|
[9] |
YOUNOSSI Z M. Non-alcoholic fatty liver disease: a global public health perspective[J]. J Hepatol, 2019, 70(3): 531-544. doi: 10.1016/j.jhep.2018.10.033
|
[10] |
ASRANI S K, DEVARBHAVI H, EATON J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. doi: 10.1016/j.jhep.2018.09.014
|
[11] |
GONG F, GAO L, DING T. IDH2 protects against nonalcoholic steatohepatitis by alleviating dyslipidemia regulated by oxidative stress[J]. Biochem Biophys Res Commun, 2019, 514(3): 593-600. doi: 10.1016/j.bbrc.2019.04.069
|
[12] |
ACÍN-PÉREZ R, IBORRA S, MARTÍ-MATEOS Y, et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity[J]. Nat Metab, 2020, 2(9): 974-988. doi: 10.1038/s42255-020-00273-8
|
[13] |
ZHONG Z Y, LIANG S, SANCHEZ-LOPEZ E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717): 198-203. doi: 10.1038/s41586-018-0372-z
|
[14] |
ZHANG H Z, SHI H M, XIE W, et al. Subacute ruminal acidosis induces pyroptosis via the mitophagy-mediated NLRP3 inflammasome activation in the livers of dairy cows fed a high-grain diet[J]. J Dairy Sci, 2024, 107(6): 4092-4107. doi: 10.3168/jds.2023-23718
|
[15] |
ZHANG N P, LIU X J, XIE L, et al. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis[J]. Lab Invest, 2019, 99(6): 749-763. doi: 10.1038/s41374-018-0177-6
|
[16] |
CHEN Y H, MA K F. NLRC4 inflammasome activation regulated by TNF-α promotes inflammatory responses in nonalcoholic fatty liver disease[J]. Biochem Biophys Res Commun, 2019, 511(3): 524-530. doi: 10.1016/j.bbrc.2019.02.099
|
[17] |
ZHANG J L, ZHAO Y J, WANG S H, et al. CREBH alleviates mitochondrial oxidative stress through SIRT3 mediating deacetylation of MnSOD and suppression of Nlrp3 inflammasome in NASH[J]. Free Radic Biol Med, 2022, 190: 28-41. doi: 10.1016/j.freeradbiomed.2022.07.018
|
[18] |
TIAN C, MIN X W, ZHAO Y X, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77(6): 1491-1503. doi: 10.1016/j.jhep.2022.07.017
|
[19] |
JIN K P, SHI Y Z, ZHANG H T, et al. A TNFα/Miz1-positive feedback loop inhibits mitophagy in hepatocytes and propagates non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 79(2): 403-416. doi: 10.1016/j.jhep.2023.03.039
|
[20] |
YU X Y, HAO M, LIU Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy[J]. Eur J Pharmacol, 2019, 864: 172715. DOI: 10.1016/j.ejphar.2019.172715.
|
[21] |
MENG Z Q, GAO M, WANG C Y, et al. Apigenin alleviated high-fat-diet-induced hepatic pyroptosis by mitophagy-ROS-CTSB-NLRP3 pathway in mice and AML12 cells[J]. J Agric Food Chem, 2023, 71(18): 7032-7045. doi: 10.1021/acs.jafc.2c07581
|
[22] |
TORRES S, SEGALÉS P, GARCÍA-RUIZ C, et al. Mitochondria and the NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis[J]. Cells, 2022, 11(9): 1475. DOI: 10.3390/cells11091475.
|
[23] |
KAI J, YANG X, WANG Z M, et al. Oroxylin a promotes PGC-1alpha/Mfn2 signaling to attenuate hepatocyte pyroptosis via blocking mitochondrial ROS in alcoholic liver disease[J]. Free Radic Biol Med, 2020, 153: 89-102. doi: 10.1016/j.freeradbiomed.2020.03.031
|
[24] |
GAO Y, XU G, MA L, et al. Icariside Ⅰ specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity[J]. Cell Commun Signal, 2021, 19(1): 13. DOI: 10.1186/s12964-020-00647-1.
|
[25] |
LIN L, CHEN Y Y, LI Q, et al. Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity[J]. J Ethnopharmacol, 2022, 285: 114796. DOI: 10.1016/j.jep.2021.114796.
|
[26] |
SHI W, LIU T T, YANG H J, et al. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117063. DOI: 10.1016/j.jep.2023.117063.
|
[27] |
WANG Y, ZHAO Y, WANG Z C, et al. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS[J]. Front Immunol, 2021, 12: 652782. DOI: 10.3389/fimmu.2021.652782.
|
[28] |
WANG Q, JIA F B, GUO C, et al. PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB(1)-induced liver injury in mice[J]. Food Chem Toxicol, 2022, 164: 113043. DOI: 10.1016/j.fct.2022.113043.
|
[29] |
SHAN S L, SHEN Z Y, ZHANG C Q, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. DOI: 10.1016/j.bcp.2019.113643.
|
[30] |
ZHU D J, ZHONG J, GONG X F, et al. Augmenter of liver regeneration reduces mitochondria-derived ROS and NLRP3 inflammasome activation through PINK1/Parkin-mediated mitophagy in ischemia-reperfusion-induced renal tubular injury[J]. Apoptosis, 2023, 28(3-4): 335-347. doi: 10.1007/s10495-022-01794-1
|
[31] |
ZHANG Q, HU J P, MAO A K, et al. Ginsenoside RB1 alleviated concanavalin A-induced hepatocyte pyroptosis by activating mitophagy[J]. Food Funct, 2023, 14(8): 3793-3803. doi: 10.1039/D2FO03130B
|
[32] |
CHANG H F, YANG F, BAI H, et al. Molybdenum and/or cadmium induce NLRP3 inflammasome production by causing mitochondria-associated endoplasmic reticulum membrane dysfunction in sheep hepatocytes[J]. Chem Biol Interact, 2023, 382: 110617. DOI: 10.1016/j.cbi.2023.110617.
|
[33] |
LIU Z N, WANG X F, LI L, et al. Hydrogen sulfide protects against paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation[J]. Oxid Med Cell Longev, 2020, 2020: 6325378. DOI: 10.1155/2020/6325378.
|
[34] |
ZHAO Y, WANG Z C, FENG D C, et al. P66shc contributes to liver fibrosis through the regulation of mitochondrial reactive oxygen species[J]. Theranostics, 2019, 9(5): 1510-1522. doi: 10.7150/thno.29620
|
[35] |
CHEON S Y, KIM M Y, KIM J, et al. Hyperammonemia induces microglial NLRP3 inflammasome activation via mitochondrial oxidative stress in hepatic encephalopathy[J]. Biomed J, 2023, 46(5): 100593. DOI: 10.1016/j.bj.2023.04.001.
|
[36] |
LI H L, ZHANG R T, HU Y Y, et al. Axitinib attenuates the progression of liver fibrosis by restoring mitochondrial function[J]. Int Immunopharmacol, 2023, 122: 110555. DOI: 10.1016/j.intimp.2023.110555.
|
[37] |
WU Y, HAO C, LIU X F, et al. MitoQ protects against liver injury induced by severe burn plus delayed resuscitation by suppressing the mtDNA-NLRP3 axis[J]. Int Immunopharmacol, 2020, 80: 106189. DOI: 10.1016/j.intimp.2020.106189.
|
[38] |
ZHAO H J, ZHANG Y M, ZHANG Y T, et al. The role of NLRP3 inflammasome in hepatocellular carcinoma[J]. Front Pharmacol, 2023, 14: 1150325. DOI: 10.3389/fphar.2023.1150325.
|
[39] |
耿西林, 张颖, 李浩, 等. 线粒体动力相关蛋白DRP1对肝癌细胞糖代谢的调控作用研究[J]. 中华全科医学, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270GENG X L, ZHANG Y, LI H, et al. Regulation of mitochondrial dynamic-related protein 1 on glucose metabolism in liver cancer cells[J]. Chinese Journal of General Practice, 2022, 20(1): 35-38. doi: 10.16766/j.cnki.issn.1674-4152.002270
|
[40] |
LI W H, LI Y J, SIRAJ S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice[J]. Hepatology, 2019, 69(2): 604-621. doi: 10.1002/hep.30191
|
[41] |
ZHENG P P, XIAO W L, ZHANG J P, et al. The role of AIM2 in human hepatocellular carcinoma and its clinical significance[J]. Pathol Res Pract, 2023, 245: 154454. DOI: 10.1016/j.prp.2023.154454.
|
[42] |
SHI X L, WANG L, REN L F, et al. Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells[J]. Phytother Res, 2019, 33(5): 1413-1425. doi: 10.1002/ptr.6332
|
[43] |
LIU Y, GUO Z W, LI J, et al. Insight into the regulation of NLRP3 inflammasome activation by mitochondria in liver injury and the protective role of natural products[J]. Biomed Pharmacother, 2022, 156: 113968. DOI: 10.1016/j.biopha.2022.113968.
|