A study on the efficacy of transcranial magnetic stimulation combined with rehabilitation training in children with autism spectrum disorders and analysis of low-frequency amplitude
-
摘要:
目的 通过静息态功能核磁共振低频振幅(ALFF)分析观察低频重复经颅磁刺激(rTMS)对孤独症谱系障碍(ASD)儿童核心症状的改善作用。 方法 纳入2021年10月—2023年12月于南京医科大学附属儿童医院康复医学科就诊的34例ASD儿童,采用随机数字表法将患儿分为ASD1组和ASD2组,每组17例。ASD1组予常规训练+低频rTMS刺激左前额叶背外侧区(DLPFC),ASD2组予常规训练+假刺激。每组各脱落1例,治疗前、治疗12周后采用孤独症行为量表(ABC)、孤独症评定量表(CARS)、重复刻板行为量表修订版(RBS-R)、孤独症治疗评价量表(ATEC)评估2组ASD患儿核心症状。对2组患儿进行静息态fMRI扫描,观察治疗前后2组ASD患儿核心症状改善情况及静息态下脑区低频振幅值指标变化。 结果 治疗后,2组ASD患儿CARS、RBS-R、ATEC评分均较治疗前明显改善;治疗后,ASD1组CARS[(32.50±1.63)分vs. (34.75±3.94)分]、RBS-R[7.00(6.00, 7.00)分vs. 8.00(7.00, 11.75)分]、ATEC[(60.20±12.29)分vs. (69.80±13.52)分]总分均优于ASD2组(P < 0.05)。治疗后ASD1组ALFF增高脑区主要有右侧眶部额下回、右侧角回、右背外侧额上回等,ASD2组治疗前后脑区无显著变化。 结论 在常规康复干预基础上,低频rTMS治疗能有效改善ASD儿童核心症状及行为学评价指标,静息态下对脑默认网络、认知等相关脑区的自发神经元调节作用可能是其作用机制。 Abstract:Objective To observe the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on the core symptoms of children with autism spectrum disorders (ASD) by ALFF analysis of resting-state functional magnetic resonance imaging. Methods Thirty-four children with ASD from the Department of Rehabilitation of Children's Hospital of Nanjing Medical University from October 2021 to December 2023 were divided into two groups (ASD1 and ASD2) by a randomized numeric table method. The ASD1 group was given regular training and low frequency rTMS stimulation to the dorsolateral prefrontal region (DLPFC), while the ASD2 group was given regular training and sham stimulation. One case was dislodged from each group. Core symptoms were assessed using the autism behavioral scale (ABC), autism rating scale (CARS), repetitive stereotyped behavioral scale-revised (RBS-R), and autism treatment evaluation scale (ATEC) before and after 12 weeks of treatment. Resting-state fMRI scans were performed in both groups before and after treatment, and their resting-state fMRI data were analyzed to observe improvements in core symptoms and changes in ALFF indexes in the resting state. Results After 12 weeks of treatment, the CARS, RBS-R, and ATEC scores of children with ASD in both groups were significantly improved compared to those before treatment. The total scores of CARS [(32.50±1.63) points vs. (34.75±3.94) points], RBS-R [7.00 (6.00, 7.00) points vs. 8.00 (7.00, 11.75) points], and ATEC [(60.20±12.29) points vs. (69.80±13.52) points] in the ASD1 group were better than those in the ASD2 group after treatment (P < 0.05). Increased ALFF in the ASD1 group was observed mainly in the superior temporal gyrus, inferior frontal gyrus, and parahippocampal gyrus, while no significant changes were seen in the ASD2 group before and after treatment. Conclusion On the basis of conventional rehabilitation intervention, low-frequency rTMS therapy can effectively improve the core symptoms and behavioral evaluation indexes of children with ASD, which is confirmed by the convergence of compensation in related brain regions at rest. -
表 1 2组ASD患儿一般资料比较
Table 1. Comparison of general data between two groups of ASD children
组别 例数 年龄(x±s,岁) 性别(例) Gesell量表(x±s,分) 男 女 ASD1组 16 3.19±0.77 9 7 60.50±14.29 ASD2组 16 2.83±0.71 10 6 57.00±16.46 统计量 1.427a 0.130b 0.642a P值 0.164 0.719 0.526 注:a为t值,b为χ2值。 表 2 2组ASD患儿ABC、RBSR量表评分比较[M(P25, P75),分]
Table 2. Comparison of ABC and RBSR scores between two groups in children with ASD [M(P25, P75), points]
组别 例数 ABC >RBS-R 治疗前 治疗后 治疗前-治疗后的差值 治疗前 治疗后 治疗前-治疗后的差值 ASD1组 16 75.00(71.25, 87.50) 67.00(63.25, 68.75) 8.00(7.00, 12.75) 12.00(9.00, 14.50) 7.00(6.00, 7.00) 3.00(2.00, 7.50) ASD2组 16 78.50(69.00, 87.25) 70.00(63.50, 79.25) 8.00(4.75, 10.00) 12.00(9.00, 15.25) 8.00(7.00, 11.75) 2.00(1.50, 3.75) Z值 -0.038 -1.498 -1.443 -0.114 -2.175 -2.450 P值 0.970 0.134 0.149 0.909 0.030 0.015 表 3 2组ASD患儿CARS、ATEC量表评分比较(x±s,分)
Table 3. Comparison of CARS and ATEC scores between two groups in children with ASD (x±s, points)
组别 例数 CARS ATEC 治疗前 治疗后 治疗前-治疗后的差值 治疗前 治疗后 治疗前-治疗后的差值 ASD1组 16 37.38±3.42 32.50±1.63 4.88±2.33 78.13±9.40 60.20±12.29 17.87±9.40 ASD2组 16 37.56±3.50 34.75±3.94 2.81±2.71 80.60±16.07 69.80±13.52 10.81±5.18 t值 0.153 2.111 2.305 0.537 2.093 2.632 P值 0.879 0.043 0.028 0.595 0.044 0.013 表 4 rTMS治疗ASD1组患儿ALFF值变化的脑区
Table 4. Brain regions with changes of ALFF values in ASD1 children treated with rTMS
脑区 体素数目 极值点T值 MNI坐标(mm) X Y Z 右侧眶部额下回 38 7.672 33 24 -9 右侧角回 39 6.300 42 -66 39 右侧背外侧额上回 27 4.483 12 27 48 -
[1] MAENNER M J, WARREN Z, WILLIAMS A R, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years: autism and developmental disabilities monitoring network, 11 sites, United States, 2020[J]. MMWR Surveill Summ, 2023, 72(2): 1-14. [2] HIROTA T, KING B H. Autism spectrum disorder: a review[J]. JAMA, 2023, 329(2): 157-168. [3] YIN M Y, LIU Y W, ZHANG L Y, et al. Effects of rTMS treatment on cognitive impairment and resting-state brain activity in stroke patients: a randomized clinical trial[J]. Front Neural Circuits, 2020, 14: 563777. DOI: 10.3389/fncir.2020.563777. [4] IGLESIAS A H. Transcranial magnetic stimulation as treatment in multiple neurologic conditions[J]. Curr Neurol Neurosci Rep, 2020, 20(1): 1. DOI: 10.1007/s11910-020-1021-0. [5] KANG J N, ZHANG Z M, WAN L Y, et al. Effects of 1Hz repetitive transcranial magnetic stimulation on autism with intellectual disability: a pilot study[J]. Comput Biol Med, 2022, 141: 105167. DOI: 10.1016/j.compbiomed.2021.105167. [6] LEFAUCHEUR J P, ALEMAN A, BAEKEN C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014-2018)[J]. Clin Neurophysiol, 2020, 131(2): 474-528. [7] NING L P, MAKRIS N, CAMPRODON J A, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138. [8] ROSENBAUM D, INT-VEEN I, KROCZEK A, et al. Amplitude of low frequency fluctuations (ALFF) of spontaneous and induced rumination in major depression: an fNIRS study[J]. Sci Rep, 2020, 10(1): 21520. DOI: 10.1038/s41598-020-78317-y. [9] 许金波, 韩辉, 施磊, 等. 眼动追踪技术在儿童孤独症谱系障碍中的研究进展[J]. 中华全科医学, 2023, 21(9): 1571-1575. doi: 10.16766/j.cnki.issn.1674-4152.003173XU J B, HAN H, SHI L, et al. Research advances of eye tracking technology in children with autism spectrum disorder[J]. Chinese Journal of General Practice, 2023, 21(9): 1571-1575. doi: 10.16766/j.cnki.issn.1674-4152.003173 [10] American Psychiatric Association(APA). Diagnostic and Statistical Manual of Mental Disorders(DSM-5)[M]. Washington, DC: American Psychiatric Publishing, 2013: 50-66. [11] YAN C G, WANG X D, ZUO X N, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. [12] KINNEY K R, HANLON C A. Changing cerebral blood flow, glucose metabolism, and dopamine binding through transcranial magnetic stimulation: a systematic review of transcranial magnetic stimulation-positron emission tomography literature[J]. Pharmacol Rev, 2022, 74(4): 918-932. [13] GAO L, WANG C, SONG X R, et al. The sensory abnormality mediated partially the efficacy of repetitive transcranial magnetic stimulation on treating comorbid sleep disorder in autism spectrum disorder children[J]. Front Psychiatry, 2022, 12: 820598. DOI: 10.3389/fpsyt.2021.820598. [14] KAOKHIEO J, TRETRILUXANA J, CHAIYAWAT P, et al. Effects of repetitive transcranial magnetic stimulation combined with action-observation-execution on social interaction and communication in autism spectrum disorder: feasibility study[J]. Brain Res, 2023, 1804: 148258. DOI: 10.1016/j.brainres.2023.148258. [15] KANG J N, SONG J J, CASANOVA M F, et al. Effects of repetitive transcranial magnetic stimulation on children with low-function autism[J]. CNS Neurosci Ther, 2019, 25(11): 1254-1261. [16] TIAN L, MA S, LI Y, et al. Repetitive transcranial magnetic stimulation can improve the fixation of eyes rather than the fixation preference in children with autism spectrum disorder[J]. Front Neurosci, 2023, 17: 1188648. DOI: 10.3389/fnins.2023.1188648. [17] YANG Y X, JIANG L, HE R Y, et al. Repetitive transcranial magnetic stimulation modulates long-range functional connectivity in autism spectrum disorder[J]. J Psychiatr Res, 2023, 160: 187-194. [18] LIU X F, BAUTISTA J, LIU E, et al. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism[J]. Mol Autism, 2020, 11(1): 83. DOI: 10.1186/s13229-020-00390-x. [19] MIZUTANI-TIEBEL Y, TIK M, CHANG K Y, et al. Concurrent TMS-fMRI: technical challenges, developments, and overview of previous studies[J]. Front Psychiatry, 2022, 13: 825205. DOI: 10.3389/fpsyt.2022.825205. [20] COLE E J, STIMPSON K H, BENTZLEY B S, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression[J]. Am J Psychiatry, 2020, 177(8): 716-726. [21] LI Y M, LI K D, FENG R J, et al. Mechanisms of repetitive transcranial magnetic stimulation on post-stroke depression: a resting-state functional magnetic resonance imaging study[J]. Brain Topogr, 2022, 35(3): 363-374. -