Effect of 3D printed titanium interbody fusion device combined with PRP-containing allograft bone in ACDF surgery
-
摘要:
目的 分析3D打印钛合金椎间融合器与富血小板血浆(PRP)处理的同种异体骨联合应用于颈前路椎间盘切除融合术(ACDF)的临床效果,以及其在促进脊柱稳定性和椎体融合中的潜在效益。 方法 选取2021年8月—2023年5月温州医科大学附属舟山医院收治的需行ACDF的颈椎病患者110例,其中56例采用3D打印钛合金椎间融合器加同种异体骨的患者为A组,54例采用3D打印钛合金椎间融合器联合含PRP同种异体骨的患者为B组。观察2组手术时间、术中出血量、术后引流量、日本骨科协会(JOA)评分、视觉模拟疼痛(VAS)评分,测量节段性前凸角(SA)、颈椎曲度指数(CCI)、椎间盘高度(IH)以及术后各时间点的融合率。 结果 2组手术时间、术中出血量比较差异均无统计学意义(P>0.05),B组术后引流量明显少于A组(P < 0.05);不同时间点VAS评分、JOA评分差异有统计学意义(P < 0.05);不同时间点SA、CCI、IH差异均有统计学意义(P < 0.05);颈椎正侧位X片显示,A、B组术后3个月影像学融合率分别为48.21%(27/56)、70.37%(38/54),术后6个月影像学融合率分别为73.21%(41/56)、92.59%(50/54),术后12个月融合率均为100.00%,B组术后3个月、6个月随访融合率明显高于A组(P < 0.05)。 结论 ACDF中采用3D打印钛合金椎间融合器联合含PRP同种异体骨具有术后引流量少的优点,还可以促进早期融合,提高融合手术成功率,有益于患者术后早期康复。 -
关键词:
- 颈椎病 /
- 3D打印钛合金椎间融合器 /
- 富血小板血浆 /
- 同种异体骨 /
- 颈前路椎间盘切除融合术 /
- 临床疗效
Abstract:Objective This study analyzes the clinical outcomes of the combined application of 3D-printed titanium alloy intervertebral fusion devices and autologous bone treated with platelet-rich plasma (PRP) in anterior cervical discectomy and fusion (ACDF) procedures. It further assesses the potential benefits of this combination in promoting spinal stability and vertebral fusion. Methods From August 2021 to May 2023, 110 patients with cervical spondylosis who needed ACDF were selected. Among them, 56 patients with 3D printed interbody fusion cage were classified as Group A, and 54 patients with 3D printed interbody fusion cage combined with PRP allograft were classified as Group B. The operation time, intraoperative blood loss, postoperative drainage, Japanese Orthopedic Association (JOA) score, and visual simulated pain (VAS) score were observed, and the segmental angle (SA), cervical curvature index (CCI), intervertebral disc height (IH) and the fusion rate at each time point after operation were measured. Results There was no significant difference in operation time and blood loss between the two groups (P>0.05), and the postoperative drainage in group B was significantly less than that in group A (P < 0.05). There were statistical differences in VAS score and JOA score evaluated at different times (P < 0.05). There were statistical differences in SA, CCI, and IH measured at different times (P < 0.05). The X-ray of the cervical spine showed that the imaging fusion rates of group A and group B were 48.21% (27/56) and 70.37% (38/54) at 3 months after operation, 73.21% (41/56) and 92.59% (50/54) at 6 months after operation, and 100.00% at 12 months after operation. The fusion rates of group B at 3 months and 6 months after operation were significantly higher than those of group A (P < 0.05). Conclusion The use of a 3D printed interbody fusion cage combined with PRP-containing allogenic bone in ACDF has the advantage of less postoperative drainage, which can also promote early fusion and improve the success rate of fusion surgery. -
表 1 2组颈椎病患者一般资料比较
Table 1. Comparison of general data between two groups of patients with cervical spondylosis
组别 例数 性别
(男/女, 例)年龄
(x±s, 岁)BMI
(x±s)诊断分型[例(%)] 病变节段[例(%)] 神经根型 脊髓型 C3~4 C4~5 C5~6 C6~7 A组 56 36/20 51.64±8.16 23.67±2.19 23(41.07) 33(58.93) 8(14.29) 18(32.14) 25(44.64) 5(8.93) B组 54 30/24 52.07±7.68 23.22±2.37 19(35.19) 35(64.81) 6(11.11) 15(27.78) 26(48.15) 7(12.96) 统计量 0.873a 0.284b 1.035b 0.404a 0.875a P值 0.350 0.777 0.303 0.525 0.831 注:a为χ2值,b为t值。 表 2 2组颈椎病患者手术时间、术中出血量、术后引流量比较(x±s)
Table 2. Comparison of operation time, intraoperative blood loss, and postoperative drainage volume between two groups of patients with cervical spondylosis (x±s)
组别 例数 手术时间
(min)术中出血量
(mL)术后引流量
(mL)A组 56 91.14±7.49 85.19±25.12 82.46±20.43 B组 54 93.18±5.16 88.17±24.62 70.71±21.59 t值 1.658 0.628 2.933 P值 0.100 0.531 0.004 表 3 2组颈椎病患者各时间点VAS评分比较(x±s, 分)
Table 3. Comparison of VAS scores at different time points between two groups of patients with cervical spondylosis (x±s, points)
组别 例数 术前 术后3个月 术后6个月 术后12个月 A组 56 7.49±2.13 4.31±1.23 2.74±1.31 1.21±0.49 B组 54 7.50±2.40 2.57±0.67 1.76±0.54 0.91±0.13 F值 0.103 101.632 17.247 16.959 P值 0.748 < 0.001 < 0.001 < 0.001 表 4 2组颈椎病患者各时间点JOA评分比较(x±s, 分)
Table 4. Comparison of JOA scores at each time points between two groups of patients with cervical spondylosis (x±s, points)
组别 例数 术前 术后3个月 术后6个月 术后12个月 A组 56 8.71±2.67 10.62±2.43 11.86±2.01 13.28±1.61 B组 54 8.60±2.37 12.69±2.47 13.47±2.01 15.82±3.01 F值 < 0.001 8.602 17.819 24.610 P值 0.994 0.004 < 0.001 < 0.001 表 5 2组颈椎病患者各时间点Cobb角比较(x±s)
Table 5. Comparison of Cobb angles at each time point between two groups of patients with cervical spondylosis (x±s)
组别 例数 SA(°) CCI(°) IH(mm) 术前 术后3个月 术后6个月 术后12个月 术前 术后3个月 术后6个月 术后12个月 术前 术后3个月 术后6个月 术后12个月 A组 56 7.13±3.24 15.71±2.64 14.71±2.61 13.64±2.57 10.47±3.74 15.49±2.48 19.20±2.16 21.67±2.14 4.49±0.67 6.29±0.81 6.01±0.67 5.51±0.52 B组 54 7.26±1.17 14.61±2.50 13.76±2.61 12.43±2.13 11.21±2.16 20.19±2.38 22.59±2.36 25.17±3.01 4.47±0.59 6.68±0.71 6.44±0.68 6.01±0.58 F值 0.613 5.217 2.829 14.772 2.131 189.589 86.698 57.997 0.022 7.459 10.446 23.790 P值 0.436 0.024 0.095 < 0.001 0.147 < 0.001 < 0.001 < 0.001 0.883 0.007 0.002 < 0.001 -
[1] 吴昊, 于海洋, 翟云雷, 等. 椎间隙环Cage周围270°自体骨回植术对腰椎融合术后椎体融合率及疗效的影响[J]. 中华全科医学, 2021, 19(9): 1488-1491. doi: 10.16766/j.cnki.issn.1674-4152.002093WU H, YU H Y, ZHAI Y L, et al. Effect of 270åutogenous bone replantation around the intervertebral cage on vertebral fusion rate and efficacy after lumbar fusion[J]. Chinese Journal of General Practice, 2021, 19(9): 1488-1491. doi: 10.16766/j.cnki.issn.1674-4152.002093 [2] ZHANG Y, DU S, AIYITI W, et al. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages[J]. Biomed Mater Eng, 2024, 35(2): 99-124. [3] POWERS A Y, NIN D Z, CHEN Y W, et al. Anterior cervical discectomy and fusion with structural allograft is associated with lower postoperative health care utilization and reoperations compared with cage implants[J]. Oper Neurosurg(Hagerstown), 2024, 26(1): 16-21. [4] 万鑫, 徐春磊, 石巍, 等. 肌源性微粒及lactadherin蛋白与髋关节周围骨折患者高凝状态的相关研究[J]. 中华骨科杂志, 2022, 42(13): 839-846. doi: 10.3760/cma.j.cn121113-20220119-00033WAN X, XU C L, SHI W, et al. Correlation of muscle-derived microparticles and lactadherin proteins with hypercoagulability in patients with perihip fractures[J]. Chinese Journal of Orthopaedics, 2022, 42(13): 839-846. doi: 10.3760/cma.j.cn121113-20220119-00033 [5] MCCARTHY M H, WEINER J A, PATEL A A. Strategies to achieve spinal fusion in multilevel anterior cervical spine surgery: an overview[J]. HSS J, 2020, 16(2): 155-161. doi: 10.1007/s11420-019-09738-3 [6] MENG M, WANG J, HUANG H, et al. 3D printing metal implants in orthopedic surgery: methods, applications and future prospects[J]. J Orthop Translat, 2023, 42: 94-112. doi: 10.1016/j.jot.2023.08.004 [7] LIU L W, WANG C S. The clinical effect of warm acupuncture and moxibustion combined with nerve mobilization in the treatment of cervical spondylotic radiculopathy, cervical mobility and its impact on VAS score[J]. PLA Med J, 2021, 33(2): 97-100. [8] AL SAIEGH F, PHILIPP L, HUGHES L P, et al. The impact of incorporating evidence-based guidelines for lumbar fusion surgery in neurosurgical resident education[J]. World Neurosurg, 2021, 154: e382-e388. doi: 10.1016/j.wneu.2021.07.045 [9] Basic Research and Chemotherapy Group of the Spinal Cord Professional Committee of the Chinese Rehabilitation Medical Association. Basic Research and Chemotherapy Group of the Spinal Cord Professional Committee of the Chinese Rehabilitation Medical Association expert consensus on the application of bioactive materials in spinal fusion surgery[J]. Chinese Med J, 2022, 102(7): 479-485. [10] 郝定均, 杨俊松, 刘团江, 等. 从仿生学角度论下颈椎骨折脱位的治疗[J]. 中华创伤骨科杂志, 2022, 24(7): 553-557. doi: 10.3760/cma.j.cn115530-20220606-00306HAO D J, YANG J S, LIU T J, et al. On the treatment of subaxial cervical fracture and dislocation from the perspective of bionics[J]. Chinese Journal of Orthopaedic Trauma, 2022, 24(7): 553-557. doi: 10.3760/cma.j.cn115530-20220606-00306 [11] LI S, HUAN Y, ZHU B, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages[J]. J Mater Sci Mater Med, 2021, 33(1): 2. [12] ZHANG T, DUNSON J, KANWAL F, et al. Trends in outcomes for marginal allografts in liver transplant[J]. JAMA Surg, 2020, 155(10): 926-932. doi: 10.1001/jamasurg.2020.2484 [13] LECKENBY J I, FURRER C, HAUG L, et al. A retrospective case series reporting the outcomes of avance nerve allografts in the treatment of peripheral nerve injuries[J]. Plast Reconstr Surg, 2020, 145(2): 368-381. doi: 10.1097/PRS.0000000000006485 [14] EVERTS P, ONISHI K, JAYARAM P, et al. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020[J]. Int J Mol Sci, 2020, 21(20): 7794-7796. doi: 10.3390/ijms21207794 [15] XU J, GOU L, ZHANG P, et al. Platelet-rich plasma and regenerative dentistry[J]. Aust Dent J, 2020, 65(2): 131-142. doi: 10.1111/adj.12754 [16] KO T T, WU C L, CHANG H K, et al. Cervical disc arthroplasty for magnetic resonance-evident cervical spondylotic myelopathy: comparison with anterior cervical discectomy and fusion[J]. Neurosurg Focus, 2023, 55(3): E3. DOI: 10.3171/2023.6.FOCUS23291. [17] RAAD M, XU A L, ORTIZ-BABILONIA C, et al. A five-year cost-utility analysis comparing synthetic cage versus allograft use in anterior cervical discectomy and fusion surgery for cervical spondylotic myelopathy[J]. Spine, 2023, 48(5): 330-334. [18] WU S, QUAN K, MEI J, et al. Cortical allograft strut augmented with platelet-rich plasma for the treatment of long bone non-union in lower limb- a pilot study[J]. BMC Musculoskelet Disord, 2022, 23(1): 512. doi: 10.1186/s12891-022-05375-w [19] WU J, FENG Q, YANG D, et al. Biomechanical evaluation of different sizes of 3D printed cage in lumbar interbody fusion-a finite element analysis[J]. BMC Musculoskelet Disord, 2023, 24(1): 85. DOI: 10.1186/s12891-023-06201-7. [20] ZHANG Y T, DU S, AIYITI W, et al. Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages[J]. Biomed Mater Eng, 2024, 35(2): 99-124. [21] BURNARD J L, PARR W C H, CHOY W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J]. Eur Spine J, 2020, 29(6): 1248-1260. doi: 10.1007/s00586-019-06236-2 [22] MANICKAM P S, ROY S, SHETTY G M. Biomechanical evaluation of a novel S-type, dynamic zero-profile cage design for anterior cervical discectomy and fusion with variations in bone graft shape: a finite element analysis[J]. World Neurosurg, 2021, 154: e199-e214. doi: 10.1016/j.wneu.2021.07.013 [23] VAN HORN M R, BEARD R, WANG W, et al. Comparison of 3D-printed titanium-alloy, standard titanium-alloy, and PEEK interbody spacers in an ovine model[J]. Spine J, 2021, 21(12): 2097-2103. [24] BURNARD J L, PARR W C H, CHOY W J, et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices[J]. Eur Spine J, 2020, 29(6): 1248-1260. -