留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨关节炎中COL1A2分子作为诊断预测标记物及其在免疫浸润中的作用机制研究

杨冬冬 赵萌 杜家琇 史宇

杨冬冬, 赵萌, 杜家琇, 史宇. 骨关节炎中COL1A2分子作为诊断预测标记物及其在免疫浸润中的作用机制研究[J]. 中华全科医学, 2024, 22(1): 30-33. doi: 10.16766/j.cnki.issn.1674-4152.003324
引用本文: 杨冬冬, 赵萌, 杜家琇, 史宇. 骨关节炎中COL1A2分子作为诊断预测标记物及其在免疫浸润中的作用机制研究[J]. 中华全科医学, 2024, 22(1): 30-33. doi: 10.16766/j.cnki.issn.1674-4152.003324
YANG Dongdong, ZHAO Meng, DU Jiaxiu, SHI Yu. COL1A2 as a diagnostic and predictive marker in osteoarthritis and the immune infiltration mechanism of osteoarthritis[J]. Chinese Journal of General Practice, 2024, 22(1): 30-33. doi: 10.16766/j.cnki.issn.1674-4152.003324
Citation: YANG Dongdong, ZHAO Meng, DU Jiaxiu, SHI Yu. COL1A2 as a diagnostic and predictive marker in osteoarthritis and the immune infiltration mechanism of osteoarthritis[J]. Chinese Journal of General Practice, 2024, 22(1): 30-33. doi: 10.16766/j.cnki.issn.1674-4152.003324

骨关节炎中COL1A2分子作为诊断预测标记物及其在免疫浸润中的作用机制研究

doi: 10.16766/j.cnki.issn.1674-4152.003324
基金项目: 

河南省医学科技攻关计划联合共建项目 LHGJ20220 785

广东省基础与应用基础研究基金项目 2019A1 515110739

详细信息
    通讯作者:

    史宇,E-mail:windrv@126.com

  • 中图分类号: R684.3

COL1A2 as a diagnostic and predictive marker in osteoarthritis and the immune infiltration mechanism of osteoarthritis

  • 摘要:   目的  骨关节炎(OA)是一种常见的退行性关节疾病, 目前对其发病机制尚不完全清楚。本研究旨在探讨OA的关键诊断标记物和免疫微环境在疾病发展中的作用,以期为OA的诊断和治疗策略提供参考和帮助。  方法  使用Gene expression omnibus(GEO)数据库中的OA软骨基因表达数据集GSE169077进行分析研究,并使用基因表达数据集GSE55235进行关键诊断标记基因的验证筛选,同时分析数据中的免疫细胞浸润表达。  结果  经过数据分析共获得402个差异表达基因,包括230个上调表达基因和172个下调表达基因。经过筛选验证后,最终得到1个关键诊断标记基因,即COL1A2。结合免疫细胞浸润分析后发现,中性粒细胞、树突状细胞、NK细胞、T细胞、单核细胞、巨噬细胞在OA免疫微环境中高度表达。  结论  本研究发现COL1A2基因可能是OA的关键诊断标记基因,COL1A2可能通过细胞外基质受体通路和黏着斑信号通路等途径发挥生物学效应,中性粒细胞、树突状细胞、NK细胞、T细胞等免疫细胞在OA的免疫微环境变化中发挥着重要的作用。本研究结果有助于深入理解OA的发病机制,为其诊断与治疗提供参考依据。

     

  • 图  1  数据集差异基因分析

    注:A为差异基因火山图,图中绿色表示表达下调的差异基因,红色表示表达上调的差异基因;B为样本基因分布图(uniform manifold approximation and projection,UMAP),图示不同组别的样本基因差异有统计学意义。

    Figure  1.  Results of differential gene analysis in dataset

    图  2  研究分析流程图

    Figure  2.  Flowchart of research analysis

    图  3  富集分析结果图

    注:A为GO富集分析结果;B为KEGG富集分析通路气泡图。

    Figure  3.  Results of enrichment analysis and PPI network analysis

    图  4  Cytohubba、LASSO分析及ROC验证图

    注:A为LASSO回归模拟图;B为两项数据分析结果的韦恩交集图;C为COL1A2的ROC曲线图。

    Figure  4.  Cytohubba and LASSO analysis and ROC validation results

    图  5  免疫浸润细胞相关性分析

    注:A为免疫细胞之间的相关性分析,图示蓝色越深相关性越高,饼图面积未超过一半表示无统计学意义上的相关性;B为COL1A2与成纤维细胞的相关性分析。

    Figure  5.  Results of correlation analysis among immune infiltrating cells

  • [1] ABRAMOFF B, CALDERA F E. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311. doi: 10.1016/j.mcna.2019.10.007
    [2] YAO Q, WU X, TAO C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Tar, 2023, 8(1): 56. doi: 10.1038/s41392-023-01330-w
    [3] 秦夕茹, 张立智. 骨关节炎疼痛的机制[J]. 中华全科医学, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971

    QIN X R, ZHANG L Z. Mechanisms of osteoarthritis pain[J]. Chinese Journal of General Practice, 2021, 19(6): 1001-1007. doi: 10.16766/j.cnki.issn.1674-4152.001971
    [4] POULSEN R C, JAIN L, DALBETH N. Re-thinking osteoarthritis pathogenesis: what can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development[J]. Arthritis Res Ther, 2023, 25(1): 59. doi: 10.1186/s13075-023-03042-6
    [5] NEDUNCHEZHIYAN U, VARUGHESE I, SUN A R, et al. Obesity, inflammation, and immune system in osteoarthritis[J]. Front Immunol, 2022, 13: 907750. DOI: 10.3389/fimmu.2022.907750.
    [6] GIORGINO R, ALBANO D, FUSCO S, et al. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update[J]. Int J Mol Sci, 2023, 24(7): 6405. doi: 10.3390/ijms24076405
    [7] WANG X, WEN D, YOU C, et al. Comprehensive analysis of immune cell infiltration and role of MSR1 expression in aneurysmal subarachnoid haemorrhage[J]. Cell Proliferation, 2023, 56(6): e13379. DOI: 10.1111/cpr.13379.
    [8] WOETZEL D, HUBER R, KUPFER P, et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation[J]. Arthritis Res Ther, 2014, 16(2): R84. DOI: 10.1186/ar4526.
    [9] MOORE J E, PURCARO M J, PRATT H E, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes[J]. Nature, 2020, 583(7818): 699-710. doi: 10.1038/s41586-020-2493-4
    [10] WANG S, WU R, LU J, et al. Protein-protein interaction networks as miners of biological discovery[J]. Proteomics, 2022, 22(15-16): e2100190. DOI: 10.1002/pmic.202100190.
    [11] ENGEBRETSEN S, BOHLIN J. Statistical predictions with glmnet[J]. Clin Epigenetics, 2019, 11(1): 123. doi: 10.1186/s13148-019-0730-1
    [12] VINA E R, KWOH C K. Epidemiology of osteoarthritis: literature update[J]. Curr Opin Rheumatol, 2018, 30(2): 160. doi: 10.1097/BOR.0000000000000479
    [13] 王健, 李志军. 骨关节炎的诊断与治疗[J]. 中华全科医学, 2020, 18(3): 347-348. http://www.zhqkyx.net/article/id/3a39a47b-c02d-4940-890f-de96249c6c2d

    WANG J, LI Z J. Diagnosis and treatment of osteoarthritis[J]. Chinese Journal of General Practice, 2020, 18(3): 347-348. http://www.zhqkyx.net/article/id/3a39a47b-c02d-4940-890f-de96249c6c2d
    [14] OWCZARZY A, KURASIŃSKI R, KULIG K, et al. Collagen-structure, properties and application[J]. Eng Biomater, 2020, 23(156): 17-23.
    [15] GIBBON A, RALEIGH S M, RIBBANS W J, et al. Functional COL1A1 variants are associated with the risk of acute musculoskeletal soft tissue injuries[J]. J Orthop Res, 2020, 38(10): 2290-2298. doi: 10.1002/jor.24621
    [16] RAI M F, TYCKSEN E D, CAI L, et al. Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis[J]. Osteoarthr Cartilage, 2019, 27(6): 945-955. doi: 10.1016/j.joca.2019.02.792
    [17] SANCHEZ-LOPEZ E, CORAS R, TORRES A, et al. Synovial inflammation in osteoarthritis progression[J]. Nat Rev Rheumatol, 2022, 18(5): 258-275. doi: 10.1038/s41584-022-00749-9
    [18] RAPP A E, ZAUCKE F. Cartilage extracellular matrix-derived matrikines in osteoarthritis[J]. Am J Physiol Cell Physiol, 2023, 324(2): C377-C394. doi: 10.1152/ajpcell.00464.2022
    [19] SUN K, LUO J, GUO J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review[J]. Osteoarthr Cartilage, 2020, 28(4): 400-409. doi: 10.1016/j.joca.2020.02.027
    [20] WOODELL-MAY J E, SOMMERFELD S D. Role of inflammation and the immune system in the progression of osteoarthritis[J]. J Orthop Res, 2020, 38(2): 253-257. doi: 10.1002/jor.24457
    [21] TRAJEROVA M, KRIEGOVA E, MIKULKOVA Z, et al. Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories[J]. Osteoarthr Cartilage, 2022, 30(12): 1583-1592. doi: 10.1016/j.joca.2022.08.019
    [22] LOUKOV D, KARAMPATOS S, MALY M, et al. Monocyte activation is elevated in women with knee-osteoarthritis and associated with inflammation, BMI and pain[J]. Osteoarthr Cartilage, 2018, 26(2): 255-263. doi: 10.1016/j.joca.2017.10.018
    [23] TAO R, FAN X X, YU H J, et al. MicroRNA-29b-3p prevents Schistosoma japonicum-induced liver fibrosis by targeting COL1A1 and COL3A1[J]. J Cell Biochem, 2018, 119(4): 3199-3209. doi: 10.1002/jcb.26475
  • 加载中
图(5)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  27
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 网络出版日期:  2024-03-09

目录

    /

    返回文章
    返回