留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

cGAS-STING通路在肾脏疾病中的研究进展

韩振元 王晓燕

韩振元, 王晓燕. cGAS-STING通路在肾脏疾病中的研究进展[J]. 中华全科医学, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304
引用本文: 韩振元, 王晓燕. cGAS-STING通路在肾脏疾病中的研究进展[J]. 中华全科医学, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304
HAN Zhenyuan, WANG Xiaoyan. Research progress on the cGAS-STING pathway in the kidney disease[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304
Citation: HAN Zhenyuan, WANG Xiaoyan. Research progress on the cGAS-STING pathway in the kidney disease[J]. Chinese Journal of General Practice, 2023, 21(12): 2119-2123. doi: 10.16766/j.cnki.issn.1674-4152.003304

cGAS-STING通路在肾脏疾病中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003304
基金项目: 

国家自然科学基金项目 81970605

详细信息
    通讯作者:

    王晓燕,E-mail:xiaoyan.wang@benqmedicalcenter.com

  • 中图分类号: R692

Research progress on the cGAS-STING pathway in the kidney disease

  • 摘要: 环鸟苷酸腺苷酸合成酶-干扰素基因刺激因子(cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes,cGAS-STING)信号通路作为先天免疫系统的重要组成部分,通过激活干扰素调节因子3或核因子-κB,促进Ⅰ型干扰素和炎性因子分泌介导免疫反应,在炎症、感染、细胞稳态、肥胖及器官纤维化发生发展中发挥着重要作用。同时,临床和基础医学研究者日益重视起cGAS-STING通路在肾脏常见疾病中的作用。研究表明,在急性肾损伤中,cGAS-STING通路的激活可以加剧炎症反应;而在慢性肾脏病中,其异常激活与肾脏纤维化的发生和发展密切相关。此外,cGAS-STING通路在肾癌中也发挥着重要的作用。因此,cGAS-STING通路可能成为治疗相关肾脏疾病的新靶点。然而,目前对于cGAS-STING通路在肾脏疾病中的具体作用机制和治疗潜力还需要进一步的研究。为了给临床医生和研究者提供新的思路,本文回顾了近年来cGAS-STING通路在常见肾脏疾病如急性肾损伤、慢性肾脏病、肾癌等方面的研究进展,并强调了该通路作为针对急性肾损伤有效治疗靶点的意义,为肾脏疾病的治疗提供新的视角和方法。

     

  • 图  1  cGAS-STING通路的信号传导

    Figure  1.  Signal transduction in the cGAS/STING pathway

  • [1] MAEKAWA H, INOUE T, JAO T M, et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury[J]. SSRN Electron J, 2019, 29(5): 1261-1273.e6.
    [2] MITROFANOVA A, FONTANELLA A, TOLERICO M, et al. Activation of stimulator of IFN genes (STING) causes proteinuria and contributes to glomerular diseases[J]. J Am Soc Nephrol, 2022, 33(12): 2153-2173. doi: 10.1681/ASN.2021101286
    [3] JI F, ZHANG F, ZHANG M, et al. Targeting the DNA damage response enhances CD70 CAR-T cell therapy for renal carcinoma by activating the cGAS-STING pathway[J]. J Hematol Oncol, 2021, 14(1): 152. doi: 10.1186/s13045-021-01168-1
    [4] HOPFNER K P, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling[J]. Nat Rev Mol Cell Biol, 2020, 21(9): 501-521. doi: 10.1038/s41580-020-0244-x
    [5] CHEN C, XU P L. Cellular functions of cGAS-STING signaling[J]. Trends Cell Biol, 2023, 33(8): 630-648. doi: 10.1016/j.tcb.2022.11.001
    [6] DING C, SONG Z, SHEN A, et al. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway[J]. Acta Pharm Sin B, 2020, 10(12): 2272-2298. doi: 10.1016/j.apsb.2020.03.001
    [7] LI T, CHEN Z J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer[J]. J Exp Med, 2018, 215(5): 1287-1299. doi: 10.1084/jem.20180139
    [8] GUAN J, TONG X, ZHANG Y, et al. Nephrotoxicity induced by cisplatin is primarily due to the activation of the 5-hydroxytryptamine degradation system in proximal renal tubules[J]. Chem Biol Interact, 2021, 349: 109662. doi: 10.1016/j.cbi.2021.109662
    [9] KELLUM J A, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7(1): 52. doi: 10.1038/s41572-021-00284-z
    [10] MCSWEENEY K R, GADANEC L K, QARADAKHI T, et al. Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations[J]. Cancers(Basel), 2021, 13(7): 1572.
    [11] QI J, LUO Q, ZHANG Q, et al. Yi-Shen-Xie-Zhuo formula alleviates cisplatin-induced AKI by regulating inflammation and apoptosis via the cGAS/STING pathway[J]. J Ethnopharmacol, 2023, 309: 116327. doi: 10.1016/j.jep.2023.116327
    [12] LUO S, YANG M, HAN Y, et al. beta-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress[J]. Int Immunopharmacol, 2022, 111: 109101. doi: 10.1016/j.intimp.2022.109101
    [13] NIEUWENHUIJS-MOEKE G J, PISCHKE S E, BERGER S P, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. doi: 10.3390/jcm9010253
    [14] CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11): 5248-5266. doi: 10.7150/thno.54550
    [15] LIVINGSTON M J, SHU S, FAN Y, et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis[J]. Autophagy, 2023, 19(1): 256-277. doi: 10.1080/15548627.2022.2072054
    [16] PABLA N, BAJWA A. Role of mitochondrial therapy for ischemic-reperfusion injury and acute kidney injury[J]. Nephron, 2022, 146(3): 253-258. doi: 10.1159/000520698
    [17] TANG C, HAN H, YAN M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury[J]. Autophagy, 2018, 14(5): 880-897. doi: 10.1080/15548627.2017.1405880
    [18] LI J, SUN X, YANG N, et al. Phosphoglycerate mutase 5 initiates inflammation in acute kidney injury by triggering mitochondrial DNA release by dephosphorylating the pro-apoptotic protein Bax[J]. Kidney Int, 2023, 103(1): 115-133. doi: 10.1016/j.kint.2022.08.022
    [19] FENG Y, IMAM ALIAGAN A, TOMBO N, et al. RIP3 translocation into mitochondria promotes mitofilin degradation to increase inflammation and kidney injury after renal ischemia-reperfusion[J]. Cells, 2022, 11(12): 1894. doi: 10.3390/cells11121894
    [20] LIAO Y, CHENG J, KONG X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020, 10(21): 9644-9662. doi: 10.7150/thno.47651
    [21] LEI C, TAN Y, NI D, et al. cGAS-STING signaling in ischemic diseases[J]. Clin Chim Acta, 2022, 531: 177-182. doi: 10.1016/j.cca.2022.04.003
    [22] CHUNG K W, DHILLON P, HUANG S, et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis[J]. Cell Metab, 2019, 30(4): 784-799.e5. doi: 10.1016/j.cmet.2019.08.003
    [23] FU H, LIU S, BASTACKY S I, et al. Diabetic kidney diseases revisited: a new perspective for a new era[J]. Mol Metab, 2019, 30: 250-263. doi: 10.1016/j.molmet.2019.10.005
    [24] TUTTLE K R, AGARWAL R, ALPERS C E, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney Int, 2022, 102(2): 248-260. doi: 10.1016/j.kint.2022.05.012
    [25] HUANG T S, WU T, WU Y D, et al. Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice[J]. Nat Commun, 2023, 14(1): 390. doi: 10.1038/s41467-023-35944-z
    [26] STENVINKEL P, CHERTOW G M, DEVARAJAN P, et al. Chronic inflammation in chronic kidney disease progression: role of Nrf2[J]. Kidney Int Rep, 2021, 6(7): 1775-1787. doi: 10.1016/j.ekir.2021.04.023
    [27] ZANG N, CUI C, GUO X, et al. cGAS-STING activation contributes to podocyte injury in diabetic kidney disease[J]. iScience, 2022, 25(10): 105145. doi: 10.1016/j.isci.2022.105145
    [28] CHEN X, HAN Y, GAO P, et al. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy[J]. Kidney Int, 2019, 95(4): 880-895. doi: 10.1016/j.kint.2018.10.038
    [29] HAN W, DU C, ZHU Y, et al. Targeting myocardial mitochondria-STING-polyamine axis prevents cardiac hypertrophy in chronic kidney disease[J]. JACC Basic Transl Sci, 2022, 7(8): 820-840. doi: 10.1016/j.jacbts.2022.03.006
    [30] BI X J, DU C H, WANG X M, et al. Mitochondrial damage-induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability[J]. Adv Sci(Weinh), 2021, 8(5): 2002738. DOI: 10.1002/advs.202002738.
    [31] ABLASSER A, HUR S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids[J]. Nat Immunol, 2020, 21(1): 17-29. doi: 10.1038/s41590-019-0556-1
    [32] SHU H B, WANG Y Y. Adding to the STING[J]. Immunity, 2014, 41(6): 871-873. doi: 10.1016/j.immuni.2014.12.002
    [33] TAKAHASHI M, LIO C J, CAMPEAU A, et al. The tumor suppressor kinase DAPK3 drives tumor-intrinsic immunity through the STING-IFN-beta pathway[J]. Nat Immunol, 2021, 22(4): 485-496. doi: 10.1038/s41590-021-00896-3
    [34] SHI J Q, LIU C Q, LUO S N, et al. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer[J]. Cell Immunol, 2021, 366: 104384. DOI: 10.1016/j.cellimm.2021.104384.
    [35] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
    [36] WU Z, LIN Y, LIU L M, et al. Identification of cytosolic DNA sensor cGAS-STING as immune-related risk factor in renal carcinoma following pan-cancer analysis[J]. J Immunol Res, 2022, 2022: 7978042. DOI: 10.1155/2022/7978042.
    [37] AN X, ZHU Y, ZHENG T, et al. An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer[J]. Mol Ther Nucleic Acids, 2019, 14: 80-89. doi: 10.1016/j.omtn.2018.11.003
    [38] 王星月, 江蕾, 杨俊伟. 巨噬细胞能量代谢与肾脏疾病的研究进展[J]. 中华全科医学, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504

    WANG X Y, JIANG L, YANG J W. The role of metabolism in macrophage in Kidney diseases[J]. Chinese Journal of General Practice, 2020, 18(8): 1348-1352. doi: 10.16766/j.cnki.issn.1674-4152.001504
  • 加载中
图(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  53
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回