留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FAM134B介导的内质网自噬及其与疾病的关系

张艺 魏娜

张艺, 魏娜. FAM134B介导的内质网自噬及其与疾病的关系[J]. 中华全科医学, 2023, 21(12): 2114-2118. doi: 10.16766/j.cnki.issn.1674-4152.003303
引用本文: 张艺, 魏娜. FAM134B介导的内质网自噬及其与疾病的关系[J]. 中华全科医学, 2023, 21(12): 2114-2118. doi: 10.16766/j.cnki.issn.1674-4152.003303
ZHANG Yi, WEI Na. FAM134B-mediated endoplasmic reticulum autophagy and its association with diseases[J]. Chinese Journal of General Practice, 2023, 21(12): 2114-2118. doi: 10.16766/j.cnki.issn.1674-4152.003303
Citation: ZHANG Yi, WEI Na. FAM134B-mediated endoplasmic reticulum autophagy and its association with diseases[J]. Chinese Journal of General Practice, 2023, 21(12): 2114-2118. doi: 10.16766/j.cnki.issn.1674-4152.003303

FAM134B介导的内质网自噬及其与疾病的关系

doi: 10.16766/j.cnki.issn.1674-4152.003303
基金项目: 

国家自然科学基金项目 U1812403-6-1-6

贵州省科技计划项目 黔科合基础-ZK[2022]一般439

地方病与少数民族疾病教育部重点实验室(贵州医科大学)开放项目 FZSW-2021-007

详细信息
    通讯作者:

    魏娜,E-mail:1838228300@qq.com

  • 中图分类号: R329.28

FAM134B-mediated endoplasmic reticulum autophagy and its association with diseases

  • 摘要: 自噬能够降解损伤衰老的细胞器以及异常的蛋白质,能够给机体的生命活动提供部分所需的能量及原料。自噬主要分为4个阶段,包括自噬前体、自噬小体、自噬溶酶体的形成以及溶酶体水解酶降解自噬体内所包裹的大分子物质的过程,依赖溶酶体降解系统进行。在细胞内,内质网是最大的细胞器,蛋白质在内质网合成和加工,钙离子贮存在内质网中;蛋白质折叠错误、钙离子平衡失调会导致内质网功能紊乱,激活内质网自噬。自噬能够维持细胞稳态,选择性自噬和非选择性自噬是根据降解底物特异性的有无分成的2种自噬类型。内质网自噬是选择性自噬众多类型中的一种,是由内质网受体介导的自噬。序列相似性家族134成员B(FAM134B)是最先在哺乳动物中发现的且已被鉴定的内质网自噬受体,其介导的内质网自噬参与了众多疾病的发展进程。FAM134B通过LC3相互作用域和网状同源结构域诱导内质网膜弯曲碎片化,便于运输到溶酶体,促进内质网降解。适度的内质网自噬肃清破损的内质网,恢复内质网内稳态;而当内质网自噬过度时就会诱导细胞启动凋亡程序。一般情况下,机体低水平的自噬对于细胞的存活是有益的,而应激状态下的过度自噬或自噬功能障碍则对机体有害。本文介绍了自噬、内质网结构及其功能、内质网自噬以及FAM134B如何介导内质网自噬,并通过梳理相关文献,阐述了FAM134B介导的内质网自噬与神经系统疾病、消化系统疾病、心血管疾病、感染性疾病之间的联系,表明通过调控FAM134B的表达在一定程度上能够控制内质网自噬,从而影响疾病的进展。

     

  • [1] 梁丹, 任超, 赵鹏跃, 等. 核糖体自噬的研究进展[J]. 生理科学进展, 2022, 53(5): 373-378.

    LIANG D, REN C, ZHAO P Y, et al. Research advance of ribophagy[J]. Progress in Physiological Sciences, 2022, 53(5): 373-378.
    [2] 张文静, 李晓峰, 孙明明, 等. 线粒体自噬在心肌梗死中的作用及研究进展[J]. 中华全科医学, 2022, 20(7): 1194-1198. doi: 10.16766/j.cnki.issn.1674-4152.002556

    ZHANG W J, LI X F, SUN M M, et al. Research progress and function of mitophagy in myocardial infarction[J]. Chinese Journal of General Practice, 2022, 20(7): 1194-1198. doi: 10.16766/j.cnki.issn.1674-4152.002556
    [3] 殷玉, 许志亮, 刘刚. 线粒体自噬在纤维化疾病中作用的研究进展[J]. 中华实用诊断与治疗杂志, 2022, 36(1): 102-105.

    YIN Y, XU Z L, LIU G. Role of mitochondrial autophagy in fibrotic diseases[J]. Journal of Chinese Practical Diagnosis and Therapy, 2022, 36(1): 102-105.
    [4] 高安博. SENP7去类泛素化修饰高尔基体膜蛋白AQP4诱导高尔基体自噬介导Apelin-13/APJ系统促心肌细胞肥大[D]. 衡阳: 南华大学, 2021.

    GAO A B. SENP7 deubiquitination modified Golgi membrane protein AQP4 induces Golgi autophagy mediated by Apelin-13/APJ system to promote cardiomyocyte hypertrophy[D]. Hengyang: University of South China, 2021.
    [5] 周宏. UBL3类泛素化修饰MAPK15诱导PEX5磷酸化增强过氧化物酶体自噬介导apelin-13/APJ促血管平滑肌细胞增殖[D]. 衡阳: 南华大学, 2020.

    ZHOU H. Ubl3-like ubiquitin modification of MAPK15 induced PEX5 phosphorylation to enhance peroxisome autophagy mediated by apelin-13/APJ to promote proliferation of vascular smooth muscle cells[D]. Hengyang: University of South China, 2020.
    [6] 刘梦媛, 翟薇, 吴明松, 等. 内质网自噬的研究进展[J]. 生理科学进展, 2022, 53(4): 264-270.

    LIU M Y, ZHAI W, WU M S, et al. The research progress of endoplasmic reticulum autophagy[J]. Progress in Physiological Sciences, 2022, 53(4): 264-270.
    [7] CHRISTIAN A H, IVAN D. ER-phagy and human diseases[J]. Cell Death Differ, 2020, 27(3): 833-842. doi: 10.1038/s41418-019-0444-0
    [8] 王子同, 王鹏宇, 李弘, 等. 内质网自噬与内质网稳态[J]. 中国病理生理杂志, 2021, 37(3): 524-531.

    WANG Z T, WANG P Y, LI H, et al. ER-phagy and ER homeostasis[J]. Chinese Journal of Pathophysiology, 2021, 37(3): 524-531.
    [9] KEISUKE M, HITOSHI N. ER-phagy: selective autophagy of the endoplasmic reticulum[J]. EMBO Reports, 2022(23): e55192. DOI: 10.15252/embr.202255192.
    [10] 郑婉秋, 李烁, 吴金峰, 等. 内质网自噬的作用机制[J]. 临床与病理杂志, 2022, 42(6): 1460-1465.

    ZHENG W Q, LI S, WU J F, et al. Mechanism of endoplasmic reticulum autophagy[J]. Journal of Clinical and Pathological Research, 2022, 42(6): 1460-1465.
    [11] KHAMINETS A, HEINRICH T, MARI M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy[J]. Nature, 2015, 522(7556): 354-358. doi: 10.1038/nature14498
    [12] LEE K T, ISLAM F, VIDER J, et al. Overexpression of family with sequence similarity 134, member B (FAM134B) in colon cancers and its tumor suppressive properties in vitro[J]. Cancer Biol Ther, 2020, 21(10): 954-962. doi: 10.1080/15384047.2020.1810535
    [13] MO J, CHEN J, ZHANG B X. Critical roles of FAM134B in ER-phagy and diseases[J]. Cell Death Differ, 2020, 11(11): 983. doi: 10.1038/s41419-020-03195-1
    [14] RAMACHANDRA M B, PAOLO G, JAVIER G P, et al. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy[J]. Nat Commun, 2019, 10: 2370. doi: 10.1038/s41467-019-10345-3
    [15] 张娇, 宋少裕, 王钊, 等. 内质网应激在胶质瘤发生发展中的作用研究进展[J]. 现代医药卫生, 2022, 38(20): 3517-3521.

    ZHANG J, SONG S Y, WANG Z, et al. Research advances in the role of endoplasmic reticulum stress in the occurrence and development of gliomas[J]. Journal of Modern Medicine & Health, 2022, 38(20): 3517-3521.
    [16] 童里, 郑小飞, 顾旺, 等. 细胞自噬在肝细胞肝癌中的研究现状[J]. 中华全科医学, 2023, 21(4): 672-676. doi: 10.16766/j.cnki.issn.1674-4152.002957

    TONG L, ZHENG X F, GU W, et al. Research status of autophagy in hepatocellular carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 672-676. doi: 10.16766/j.cnki.issn.1674-4152.002957
    [17] LIAO Y J, DUAN B, ZHANG Y F, et al. Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells[J]. Biol Chem, 2019, 294(52): 20009-20023. doi: 10.1074/jbc.RA119.008709
    [18] XIE N, LI Y, WANG C, et al. FAM134B attenuates seizure-induced apoptosis and endoplasmic reticulum stress in hippocampal neurons by promoting autophagy[J]. Cell Mol Neurobiol, 2020, 40(8): 1297-1305. doi: 10.1007/s10571-020-00814-5
    [19] CHEN W, OUYANG X Q, CHEN L X, et al. FAM134B-mediated ER-phagy regulates ER-mitochondria interaction through MAMs[J]. Acta Biochim Biophys Sin, 2022, 54(3): 412-414. doi: 10.3724/abbs.2021020
    [20] JIANG X, WANG X, DING X, et al. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy[J]. EMBO J, 2020, 39(5): e102608. DOI: 10.15252/embj.2019102608.
    [21] WAKIL S M, MONIES D, HAGOS S, et al. Exome sequencing: mutilating sensory neuropathy with spastic paraplegia due to a mutation in FAM134B gene[J]. Case Rep Genet, 2018, 5: 9468049. DOI: 10.1155/2018/9468049.
    [22] 钟蓝海. 134序列相似的家庭成员B在肝细胞癌中的表达、意义及作用[D]. 广州: 南方医科大学, 2020.

    ZHONG L H. Expression, significance and role of family member B with similar sequence 134 in hepatocellular carcinoma[D]. Guangzhou: Southern Medical University, 2020.
    [23] ISLAM F, GOPALAN V, WAHAB R, et al. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer[J]. Hum Genet, 2017, 136: 321-337. doi: 10.1007/s00439-017-1760-4
    [24] LEE K, ISLAM F, VIDER J, et al. Overexpression of family with sequence similarity 134, member B (FAM134B) in colon cancers and its tumor suppressive properties in vitro[J]. Cancer Biol Ther, 2020, 21(10): 954-962. doi: 10.1080/15384047.2020.1810535
    [25] HUANG W G, ZHANG J, JIN W Z, et al. Piperine alleviates acute pancreatitis: a possible role for FAM134B and CCPG1 dependent ER-phagy[J]. Phytomedicine, 2022, 105: 154361. DOI: 10.1016/j.phymed.2022.154361.
    [26] VANHOUTTE D, SCHIPS TG, VO A, et al. Thbs1 induces lethal cardiac atrophy through PERK-ATF4 regulated autophagy[J]. Nat Commun, 2021, 12(1): 3928. doi: 10.1038/s41467-021-24215-4
    [27] QI H, REN J, BA L, et al. MSTN attenuates cardiac hypertrophy through inhibition of excessive cardiac autophagy by blocking AMPK/mTOR and miR-128/PPARγ/NF-κB[J]. Mol Ther Nucleic Acids, 2020, 19: 507-522. doi: 10.1016/j.omtn.2019.12.003
    [28] WANG X, CUI T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol, 2017, 313(2): H304-H319. doi: 10.1152/ajpheart.00145.2017
    [29] YANG Y, ZHANG K, HUANG S, et al. Apelin-13/APJ induces cardiomyocyte hypertrophy by activating the Pannexin-1/P2X7 axis and FAM134B-dependent reticulophagy[J]. J Cell Physiol, 2022, 237(4): 2230-2248. doi: 10.1002/jcp.30685
    [30] 张开. Pannexin-1半通道开放诱导FAM134B依赖性内质网自噬介导Apelin-13促H9C2和HL-1细胞肥大[D]. 衡阳: 南华大学, 2020.

    ZHANG K. Pannexin-1 semi-channel opening induces FAM134B-dependent endoplasmic reticulum autophagy mediating Apelin-13 to promote hypertrophy of H9C2 and HL-1 cells[D]. Hengyang: University of South China, 2020.
    [31] JIANG X, SHAO M, LIU X, et al. Reversible treatment of pressure overload-induced left ventricular hypertrophy through Drd5 nucleic acid delivery mediated by functional polyaminoglycoside[J]. Adv Sci (Weinh), 2021, 8(5): 2003706. DOI: 10.1002/adrs.202003706.
    [32] SONG C, QI H, LIU Y, et al. Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice[J]. Molecular Therapy, 2021, 29(3): 1120-1137. doi: 10.1016/j.ymthe.2020.10.024
    [33] LI T, CHEN Y, LI Y, et al. FAM134B-mediated endoplasmic reticulum autophagy protects against sepsis myocardial injury in mice[J]. Aging (Albany NY), 2021, 13(10): 13535-13547.
    [34] LENNEMANN N J, COYNE C B. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B[J]. Autophagy, 2017, 13(2): 322-332. doi: 10.1080/15548627.2016.1265192
    [35] 杨勇, 高甜甜, 吴狄凌, 等. FAM134B介导的内质网自噬对脓毒症的影响[J]. 中国现代医学杂志, 2019, 29(17): 11-17.

    YANG Y, GAO T T, WU D L, et al. Effect of FAM134B mediated ER-phagy in sepsis[J]. China Journal of Modern Medicine, 2019, 29(17): 11-17.
  • 加载中
计量
  • 文章访问数:  178
  • HTML全文浏览量:  58
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回