Expression and clinical significance of CPT2 in renal clear cell carcinoma
-
摘要:
目的 探讨肉碱棕榈酰转移酶2(CPT2)在肾透明细胞癌(ccRCC)中的差异化表达以及与临床预后的相关性,为ccRCC的诊治提供新的生物治疗靶点和理论依据。 方法 首先筛选肿瘤基因组图谱(TCGA)数据,从中获得目的基因CPT2。随后利用R软件分析该基因的差异化表达结果。通过R软件对TCGA下载的临床数据及预后情况进行分析,并绘制可视化图表。利用免疫组化研究该基因在ccRCC组织及癌旁组织中的差异化表达,以及与临床数据的相关性。 结果 利用R软件对TCGA数据库样本分析得出:CPT2在癌旁组织的表达高于癌组织(P < 0.05)。不同年龄及N分期的患者CPT2表达的差异无统计学意义(均P>0.05),不同性别、T分期、M分期、临床分期、病理分级及总生存期的患者CPT2表达的差异有统计学意义(均P < 0.05)。免疫组化结果表明:CPT2在癌旁组织中的表达率(100.0%,16/16)高于ccRCC组织(39.7%,23/58,P < 0.001)。不同临床分期患者CPT2比较差异有统计学意义(P < 0.05),不同性别、T分期、病理分级、M分期、年龄患者CPT2比较差异无统计学意义(均P>0.05)。CPT2的KEGG通路主要为脂肪细胞因子信号通路、胰高血糖素信号通路、脂肪酸降解、脂肪酸代谢、过氧化物酶体增殖物激活受体(PPAR)信号通路等。 结论 CPT2在肾透明细胞癌中可能是一个抑癌基因,这也许可以作为肾透明细胞癌早期筛查及治疗的潜在生物靶点,为肾透明细胞癌的预防与治疗带来新的方案和方向。 -
关键词:
- 肾透明细胞癌 /
- 肉碱棕榈酰转移酶2 /
- 癌症基因组图谱数据库 /
- 生物信息学
Abstract:Objective To investigate the differential expression of carnitine palmitoyltransferase 2 (CPT2) in renal clear cell carcinoma (ccRCC) and its correlation with clinical prognosis, in order to provide a new biological therapy target and theoretical basis for the diagnosis and treatment of ccRCC. Methods The tumor genome atlas (TCGA) data were first screened to obtain the target gene CPT2. Subsequently, R software was used to analyze the differential expression results of the gene. The clinical data and prognosis downloaded from TCGA was analyzed by R software and visual charts was draw. Immunohistochemistry was used to study the differential expression of this gene in ccRCC tissues and paraneoplastic tissues. Immunohistochemistry was used to study the differential expression of gene in ccRCC tissues and paraneoplastic tissues, and the correlation with clinical data was analyzed. Results Using R software to analyze the TCGA database samples, it was found that the expression of CPT2 in paracancerous tissues was higher than that in cancerous tissues (P < 0.05). There was no statistically significant difference in CPT2 expression among patients of different ages and N stages (all P>0.05). There were significant differences in CPT2 expression among patients with different gender, T stage, M stage, clinical stage, pathological grade and overall survival (all P < 0.05). Immunohistochemical results showed that the expression rate of CPT2 in paracancerous tissues (100.0%, 16/16) was higher than that in ccRCC tissues (39.7%, 23/58, P < 0.001). There was a statistically significant difference in CPT2 comparison among patients with different clinical stages (P < 0.05), and there was no statistically significant difference in CPT2 comparison among patients with different gender, T stage, pathological grade, M stage, and age (all P>0.05). The KEGG pathway of CPT2 mainly included adipocyte factor signaling pathway, glucagon signaling pathway, fatty acid degradation, fatty acid metabolism, and PPAR signaling pathway, etc. Conclusion CPT2 may be a tumor suppressor gene in renal clear cell carcinoma, which may serve as a potential biological target for early screening and treatment, bringing new programs and directions for the prevention and treatment of renal clear cell carcinoma. -
表 1 TCGA数据库中CPT2表达与临床参数的相关性[例(%)]
Table 1. Correlation between CPT2 expression and clinical parameters in TCGA database[cases (%)]
项目 CPT2低表达 CPT2高表达 χ2值 P值 性别 女性 76(14.0) 111(20.5) 9.815 0.002 男性 194(35.9) 160(29.6) 年龄(岁) ≤60 134(24.8) 135(25.0) 0.002 0.966 >60 136(25.1) 136(25.1) T分期 T1+T2 152(28.1) 198(36.6) 16.646 < 0.001 T3+T4 118(21.8) 73(13.5) N分期 N0 120(46.5) 122(47.3) 0.267 0.606 N1 9(3.5) 7(2.7) M分期 M0 199(39.2) 230(45.3) 19.501 < 0.001 M1 58(11.4) 21(4.1) 临床分期 Ⅰ期+Ⅱ期 138(25.7) 194(36.1) 23.594 < 0.001 Ⅲ期+Ⅳ期 130(24.2) 76(14.1) 病理分级 G1+G2 95(17.8) 155(29.1) 25.864 < 0.001 G3+G4 170(31.9) 113(21.2) 总生存期 存活 146(27.0) 220(40.7) 45.411 < 0.001 死亡 124(22.9) 51(9.4) 注:因TCGA数据库下载的数据存在缺失,导致各临床参数数目不同。其中性别、年龄、T分期、总生存期数目分别为541例。N分期为258例。M分期为508例。临床分期为538例。病理分级为533例。 表 2 CPT2在癌旁组织和癌组织中的表达[例(%)]
Table 2. Expression of CPT2 in para-carcinoma and carcinoma tissues [cases (%)]
组别 例数 CPT2阳性 CPT2阴性 癌旁组织 16 16(100.0) 0 癌组织 58 23(39.7) 35(60.3) 注:χ2=18.320,P < 0.001。 表 3 不同临床病理特征肾癌患者CPT2的表达情况(例)
Table 3. Expression of CPT2 in renal cancer patients with different clinicopathological features (cases)
项目 例数 CPT2阳性 CPT2阴性 χ2值 P值 年龄(岁) ≤60 30 11 19 0.232 0.630 >60 28 12 16 性别 男性 32 12 20 0.139 0.710 女性 26 11 15 T分期 T1+T2 47 19 28 0.061 0.804 T3+T4 11 4 7 M分期 M0 57 22 35 2.586 0.108 M1 1 1 0 临床分期 Ⅰ期+Ⅱ期 42 20 22 4.035 0.045 Ⅲ期+Ⅳ期 16 3 13 病理分级 G1+G2 44 17 27 0.079 0.779 G3+G4 14 6 8 -
[1] 高五岳, 郭园园, 刘贝贝, 等. 不同距离癌旁组织PD-1和PD-L1表达对肾部分切除术边距选择的临床意义[J]. 中华全科医学, 2019, 17(12): 2004-2007, 2034. doi: 10.16766/j.cnki.issn.1674-4152.001113GAO W Y, GUO Y Y, LIU B B, et al. The clinical significances of PD-1 and PD-L1 expressions in different distant tumor adjacent tissues for selecting safe surgical margins in partial nephrectomy[J]. Chinese Journal of General Practice, 2019, 17(12): 2004-2007, 2034. doi: 10.16766/j.cnki.issn.1674-4152.001113 [2] CAO C C, MA Q, HUANG X B, et al. Targeted demethylation of the PLOD2 mRNA inhibits the proliferation and migration of renal cell carcinoma[J]. Front Mol Biosci, 2021, 8: 675683. DOI: 10.3389/fmolb.2021.675683. [3] ZHANG D, WANG Y C, HU X P. Identification and comprehensive validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma[J]. DNA Cell Biol, 2020, 39(10): 1799-1812. doi: 10.1089/dna.2020.5601 [4] MELONE M A B, VALENTINO A, MARGARUCCI S, et al. The carnitine system and cancer metabolic plasticity[J]. Cell Death Dis, 2018, 9(2): 228. doi: 10.1038/s41419-018-0313-7 [5] YAO M, CAI M, YAO D F, et al. Abbreviated half-lives and impaired fuel utilization in carnitine palmitoyl transferase Ⅱ variant fibroblasts[J]. PLoS One, 2015, 10(3): e0119936. DOI: 10.1371/journal.pone.0119936. [6] HOUTEN S M, WANDERS R J A, RANEA-ROBLES P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(5): 165720. DOI: 10.1016/j.bbadis.2020.165720. [7] FUJIWARA N, NAKAGAWA N, ENOOKU K, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity[J]. Gut, 2018, 67(8): 1493-1504. doi: 10.1136/gutjnl-2017-315193 [8] BONNEFONT J P, DJOUADI F, PRIP-BUUS C, et al. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects[J]. Mol Aspects Med, 2004, 25(5-6): 495-520. doi: 10.1016/j.mam.2004.06.004 [9] PEREYRA A S, RAJAN A, FERREIRA C R, et al. Loss of muscle carnitine palmitoyltransferase 2 prevents diet-induced obesity and insulin resistance despite long-chain acylcarnitine accumulation[J]. Cell Rep, 2020, 33(6): 108374. DOI: 10.1016/j.celrep.2020.108374. [10] GU J J, YAO M, YANG J, et al. Mitochondrial carnitine palmitoyl transferase-Ⅱ inactivity aggravates lipid accumulation in rat hepatocarcinogenesis[J]. World J Gastroenterol, 2017, 23(2): 256-264. doi: 10.3748/wjg.v23.i2.256 [11] PEREYRA A S, HASEK L Y, HARRIS K L, et al. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy[J]. J Biol Chem, 2017, 292(45): 18443-18456. doi: 10.1074/jbc.M117.800839 [12] LIN M H, LV D, ZHENG Y L, et al. Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma[J]. Onco Targets Ther, 2018, 11: 3101-3110. doi: 10.2147/OTT.S163266 [13] HAN S J, WEI R, ZHANG X D, et al. CPT1A/2-mediated FAO enhancement-a metabolic target in radioresistant breast cancer[J]. Front Oncol, 2019, 9: 1201. doi: 10.3389/fonc.2019.01201 [14] LIU J X, LI Y M, XIAO Q, et al. Identification of CPT2 as a prognostic biomarker by integrating the metabolism-associated gene signature in colorectal cancer[J]. BMC Cancer, 2022, 22(1): 1038. doi: 10.1186/s12885-022-10126-0 [15] SUN Z L, JING C Y, XIAO C T, et al. Prognostic risk signature based on the expression of three m6A RNA methylation regulatory genes in kidney renal papillary cell carcinoma[J]. Aging, 2020, 12(21): 22078-22094. doi: 10.18632/aging.104053 [16] PEREYRA A S, HASEK L Y, HARRIS K L, et al. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy[J]. J Biol Chem, 2017, 292(45): 18443-18456. doi: 10.1074/jbc.M117.800839 [17] ZHANG X H, ZHANG Z, LIU S J, et al. CPT2 down regulation promotes tumor growth and metastasis through inducing ROS/NFκB pathway in ovarian cancer[J]. Transl Oncol, 2021, 14(4): 101023. DOI: 10.1016/j.tranon.2021.101023. [18] LI H, CHEN J H, LIU J, et al. CPT2 down regulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism[J]. Exp Cell Res, 2021, 409(1): 112892. DOI: 10.1016/j.yexcr.2021.112892. [19] GUO X, WANG A M, WANG W, et al. HRD1 inhibits fatty acid oxidation and tumorigenesis by ubiquitinating CPT2 in triple-negative breast cancer[J]. Mol Oncol, 2021, 15(2): 642-656. doi: 10.1002/1878-0261.12856 [20] AIMUDULA A, NASIER H, YANG Y, et al. PPARα mediates sunitinib resistance via NF-κB activation in clear cell renal cell carcinoma[J]. Int J Clin Exp Pathol, 2018, 11(5): 2389-2400. [21] WU Y F, SONG T, LIU M W, et al. PPARG negatively modulates Six2 in tumor formation of clear cell renal cell carcinoma[J]. DNA Cell Biol, 2019, 38(7): 700-707. doi: 10.1089/dna.2018.4549 -