留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可变剪接在自身免疫性疾病中的研究进展

储依然 徐胜前

储依然, 徐胜前. 可变剪接在自身免疫性疾病中的研究进展[J]. 中华全科医学, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086
引用本文: 储依然, 徐胜前. 可变剪接在自身免疫性疾病中的研究进展[J]. 中华全科医学, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086
CHU Yiran, XU Shengqian. Research progress of alternative splicing in autoimmune diseases[J]. Chinese Journal of General Practice, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086
Citation: CHU Yiran, XU Shengqian. Research progress of alternative splicing in autoimmune diseases[J]. Chinese Journal of General Practice, 2023, 21(7): 1211-1214. doi: 10.16766/j.cnki.issn.1674-4152.003086

可变剪接在自身免疫性疾病中的研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003086
基金项目: 

吴阶平医学基金会临床科研专项资助基金项目 320.6750.2020-03-4

详细信息
    通讯作者:

    徐胜前,E-mail:xsqian-1112@163.com

  • 中图分类号: R593.2

Research progress of alternative splicing in autoimmune diseases

  • 摘要: 可变剪接(alternative splicing, AS)是一种调节基因表达的一般机制,高达95%的人类基因经历了AS,这意味着这种转录后调节机制对几乎所有细胞过程都至关重要。AS的总体功能是增加从基因组表达的mRNA的多样性。AS会改变mRNA编码的蛋白质,从而产生深远的功能影响。在后生动物免疫系统的基因产物中也观察到AS,这些免疫系统已进化到能够有效识别病原体并区分“自我”和“非自我”,这可能得益于AS提供了其多样性和灵活性。人体免疫反应是一个复杂的过程,它响应许多外源性抗原,防止微生物感染,以及监测肿瘤和自身免疫性疾病的内源性成分,并且需要大量分子来支撑功能复杂的免疫活动。前mRNA的可变剪接通过产生多种转录亚型以补充与免疫反应相关的有限基因的功能,在免疫细胞发育和免疫活性调节中起重要作用。此外,多种因素已被确定为参与控制选择性剪接,RNA的异常剪接可以导致感染、免疫疾病、免疫活动的异常以及肿瘤。本文重点讨论了AS在免疫系统细胞内的调节,以及它们对免疫生物学的影响和AS与自身免疫性疾病,如类风湿性关节炎(rheumatoid arthritis, RA)和系统性红斑狼疮(systemic lupus erythematosus, SLE)之间的关联。总结AS与自身免疫性疾病相关的部分最新发现,并试图找到剪接调节的共同模式,这可能会促进对自身免疫性疾病的理解,并开辟新的治疗途径。

     

  • 表  1  自身免疫性疾病相关的可变剪接基因

    Table  1.   Variable splicing genes associated with autoimmune diseases

    自身免疫性疾病 基因 剪接亚型
    类风湿性关节炎 FOXP3 FOXP3flFOXP3D2
    CD44 CD44v3、v4、v7-v8
    Fibronectin 含EDA区的亚型
    IL6R 可溶性受体
    TNFR2(跳过外显子7、8) 新型可溶性受体
    Tenascin-C 大异构体增加
    CD1d(跳过外显子4、5) 可溶性受体
    系统性红斑狼疮 CD44 CD44v6亚型
    RasGRP1 异常剪接变异体
    IRF5(替代5’剪接位点) 特异性外显子1
    CD72 缺失外显子8的亚型
    BANK1(分支点SNP) 缺失外显子2的亚型
    LILRA2(替代3’剪接位点) 缺乏3个氨基酸的新异构体
    硬皮病 IL4 短异构体
    溃疡性结肠炎 PTPσ(跳过外显子8、9) 缺乏ig样结构域的亚型
    多发性硬化 IL7R(外显子6的跳过) 产生更多的sIL7R
    OAS1(替代3’剪接位点) 新的异构体
    MBP 多种异构体
    MOG 多种异构体
    PLP(替代5’剪接位点) 两种亚型
    注:Fibronectin为纤连蛋白;EDA为额外域A;IL6R为白细胞介素6受体;TNFR2为肿瘤坏死因子α2受体;Tenascin-C为肌腱蛋白C;RasGRP1为鸟苷酸释放蛋白1;IRF5为干扰素调节因子5;BANK1为具有锚蛋白重复序列的B细胞支架蛋白;LILRA2为白细胞免疫球蛋白样受体A2;PTPσ为蛋白酪氨酸磷酸酶σ;IL7R为白细胞介素7受体;OAS1为2’, 5’-寡腺苷酸合成酶1;MBP为髓鞘碱性蛋白;MOG为髓鞘少突胶质糖蛋白;PLP为蛋白脂质蛋白。
    下载: 导出CSV
  • [1] WILKINSON M E, CHARENTON C, NAGAI K. RNA splicing by the spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388. doi: 10.1146/annurev-biochem-091719-064225
    [2] WAN R X, BAI R, ZHAN X C, et al. How is precursor messenger RNA spliced by the spliceosome?[J]. Annu Rev Biochem, 2020, 89: 333-358. doi: 10.1146/annurev-biochem-013118-111024
    [3] HASELBACH D, KOMAROV I, AGAFONOV D E, et al. Structure and conformational dynamics of the human spliceosomal Bact complex[J]. Cell, 2018, 172(3): 454-464.e11. DOI: 10.1016/j.cell.2018.01.010.
    [4] JORDAN P, GONÇALVES V, FERNANDES S, et al. Networks of mRNA processing and alternative splicing regulation in health and disease[J]. Adv Exp Med Biol, 2019, 1157: 1-27.
    [5] VANICHKINA D P, SCHMITZ U, WONG J J, et al. Challenges in defining the role of intron retention in normal biology and disease[J]. Semin Cell Dev Biol, 2018, 75: 40-49. doi: 10.1016/j.semcdb.2017.07.030
    [6] RADENS C M, BLAKE D, JEWELL P, et al. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing[J]. RNA, 2020, 26(10): 1320-1333. doi: 10.1261/rna.075929.120
    [7] WEST K O, SCOTT H M, TORRES-ODIO S, et al. The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages[J]. Cell Rep, 2019, 29(6): 1594-1609.e5. DOI: 10.1016/j.celrep.2019.09.078.
    [8] JANSSEN W J, DANHORN T, HARRIS C, et al. Inflammation-induced alternative pre-mRNA splicing in mouse alveolar macrophages[J]. G3(Bethesda), 2020, 10(2): 555-567.
    [9] LIU H F, LORENZINI P A, ZHANG F, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator[J]. Nucleic Acids Res, 2018, 46(12): 6069-6086. doi: 10.1093/nar/gky401
    [10] SINGH I, LEE S H, SPERLING A S, et al. Widespread intronic polyadenylation diversifies immune cell transcriptomes[J]. Nat Commun, 2018, 9(1): 1716. doi: 10.1038/s41467-018-04112-z
    [11] COURTNEY A H, SHVETS A A, LU W, et al. CD45 functions as a signaling gatekeeper in T cells[J]. Sci Signal, 2019, 12(604): eaaw8151. DOI: 10.1126/scisignal.aaw8151.
    [12] BUCHBINDER J H, PISCHEL D, SUNDMACHER K, et al. Quantitative single cell analysis uncovers the life/death decision in CD95 network[J]. PLoS Comput Biol, 2018, 14(9): e1006368. DOI: 10.1371/journal.pcbi.1006368.
    [13] KIST M, VUCIC D. Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40(5): e106700. DOI: 10.15252/embj.2020106700.
    [14] KURMA K, BOIZARD-MORACCHINI A, GALLI G, et al. Soluble CD95L in cancers and chronic inflammatory disorders, a new therapeutic target?[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188596. DOI: 10.1016/j.bbcan.2021.188596.
    [15] VILYS L, PECIULIENE I, JAKUBAUSKIENE E, et al. U2AF-Hypoxia-induced fas alternative splicing regulator[J]. Exp Cell Res, 2021, 399(1): 112444. DOI: 10.1016/j.yexcr.2020.112444.
    [16] JANG H N, LIU Y, CHOI N, et al. Binding of SRSF4 to a novel enhancer modulates splicing of exon 6 of fas pre-mRNA[J]. Biochem Biophys Res Commun, 2018, 506(3): 703-708. doi: 10.1016/j.bbrc.2018.10.123
    [17] PECIULIENE I, VILYS L, JAKUBAUSKIENE E, et al. Hypoxia alters splicing of the cancer associated fas gene[J]. Exp Cell Res, 2019, 380(1): 29-35. doi: 10.1016/j.yexcr.2019.04.015
    [18] BEN-MUSTAPHA I, AGREBI N, BARBOUCHE M R. Novel insights into FAS defects underlying autoimmune lymphoproliferative syndrome revealed by studies in consanguineous patients[J]. J Leukoc Biol, 2018, 103(3): 501-508. doi: 10.1002/JLB.5MR0817-332R
    [19] GUÉGAN J P, LEGEMBRE P. Nonapoptotic functions of Fas/CD95 in the immune response[J]. FEBS J, 2018, 285(5): 809-827. doi: 10.1111/febs.14292
    [20] VINCENT F B, KANDANE-RATHNAYAKE R, KOELMEYER R, et al. Associations of serum soluble Fas and Fas ligand (FasL) with outcomes in systemic lupus erythematosus[J]. Lupus Sci Med, 2020, 7(1): e000375. DOI: 10.1136/lupus-2019-000375.
    [21] STEVENS M, OLTEAN S. Modulation of the apoptosis gene Bcl-x function through alternative splicing[J]. Front Genet, 2019, 10: 804. doi: 10.3389/fgene.2019.00804
    [22] MURAD F, GARCIA-SAEZ A J. Bcl-xL inhibits tBid and Bax via distinct mechanisms[J]. Faraday Discuss, 2021, 232(0): 86-102. DOI: 10.1039/d0fd00045k.
    [23] YU S, DU M Y, YIN A, et al. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation[J]. Int J Biochem Cell Biol, 2020, 122: 105720. DOI: 10.1016/j.biocel.2020.105720.
    [24] 宋梦婷, 王振杰, 郭培霞, 等. 老年起病类风湿关节炎的诊治进展[J]. 中华全科医学, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884

    SONG M T, WANG Z J, GUO P X, et al. Advances in the diagnosis and treatment of rheumatoid arthritis in elderly patients[J]. Chinese Journal of General Practice, 2021, 19(4): 648-652. doi: 10.16766/j.cnki.issn.1674-4152.001884
    [25] WING J B, TANAKA A, SAKAGUCHI S. Human FOXP3+ regulatory T Cell heterogeneity and function in autoimmunity and cancer[J]. Immunity, 2019, 50(2): 302-316. doi: 10.1016/j.immuni.2019.01.020
    [26] SUN X H, XIAO Y F, ZENG Z T, et al. All-Trans retinoic acid induces CD4+CD25+FOXP3+ regulatory T cells by increasing FOXP3 demethylation in systemic sclerosis CD4+ T cells[J]. J Immunol Res, 2018, 2018: 8658156. DOI: 10.1155/2018/8658156.
    [27] MAILER R K W. Alternative splicing of FOXP3-virtue and vice[J]. Front Immunol, 2018, 9: 530. doi: 10.3389/fimmu.2018.00530
    [28] RYDER L R, BARTELS E M, WOETMANN A, et al. FOXP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis[J]. APMIS, 2012, 120(5): 387-396. doi: 10.1111/j.1600-0463.2011.02848.x
    [29] MISHRA M N, CHANDAVARKAR V, SHARMA R, et al. Structure, function and role of CD44 in neoplasia[J]. J Oral Maxillofac Pathol, 2019, 23(2): 267-272. doi: 10.4103/jomfp.JOMFP_246_18
    [30] CHEN C, ZHAO S J, KARNAD A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
    [31] GRISAR J, MUNK M, STEINER C W, et al. Expression patterns of CD44 and CD44 splice variants in patients with rheumatoid arthritis[J]. Clin Exp Rheumatol, 2012, 30(1): 64-72.
    [32] KATSUYAMA T, TSOKOS G C, MOULTON V R. Aberrant T cell signaling and subsets in systemic lupus erythematosus[J]. Front Immunol, 2018, 9: 1088. doi: 10.3389/fimmu.2018.01088
    [33] XIAO F, CHEN L B. Effects of extracorporeal fucosylation of CD44 on the homing ability of rabbit bone marrow mesenchymal stem cells[J]. J Orthop Sci, 2019, 24(4): 725-730. doi: 10.1016/j.jos.2018.11.010
    [34] LATINI A, NOVELLI L, CECCARELLI F, et al. mRNA expression analysis confirms CD44 splicing impairment in systemic lupus erythematosus patients[J]. Lupus, 2021, 30(7): 1086-1093. doi: 10.1177/09612033211004725
    [35] BAARS M J D, DOUMA T, SIMEONOV D R, et al. Dysregulated RASGRP1 expression through RUNX1 mediated transcription promotes autoimmunity[J]. Eur J Immunol, 2021, 51(2): 471-482. doi: 10.1002/eji.201948451
    [36] MAO H W, YANG W L, LATOUR S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease[J]. J Allergy Clin Immunol, 2018, 142(2): 595-604.e16. DOI: 10.1016/j.jaci.2017.10.026.
    [37] KONO M, KURITA T, YASUDA S, et al. Decreased expression of serine/arginine-rich splicing factor 1 in t cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA methyltransferase 1[J]. Arthritis Rheumatol, 2018, 70(12): 2046-2056. doi: 10.1002/art.40585
  • 加载中
表(1)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  50
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 网络出版日期:  2023-08-28

目录

    /

    返回文章
    返回