Knockdown of EPHA2 regulates autophagy and biological behavior of bladder cancer cell through mTOR phosphorylation
-
摘要:
目的 探究Si-EPHA2通过靶向mTOR自噬通路干扰膀胱癌细胞生物学行为的分子机制。 方法 通过Western blotting实验和qRT-PCR实验检测EPHA2在膀胱癌组织和癌旁组织以及膀胱癌细胞(T24)和正常尿路上皮细胞(SV-HUC-1)中的表达水平。通过siRNA转染敲低膀胱癌T24细胞中EPHA2的表达,构成一个抑制EPHA2表达的膀胱癌细胞实验模型,将细胞分成si-NC的空白对照组和si-EPHA2实验组。通过CCK-8实验检测膀胱癌细胞增殖的变化,Transwell实验检测膀胱癌细胞迁移和侵袭的变化,流式细胞学实验检测膀胱癌细胞凋亡的变化;通过Western blotting实验检测敲低EPHA2表达后膀胱癌mTOR磷酸化水平及自噬标记物LC3的表达;在敲低EPHA2表达的T24细胞基础上继续敲低TSC1,检测膀胱癌细胞生物学改变。 结果 EPHA2在膀胱癌组织和细胞中表现出较高的表达水平(P<0.05);敲低EPHA2降低了mTOR磷酸化水平,自噬水平增加(P<0.05);敲低EPHA2显著抑制了膀胱癌细胞的增殖、迁移和侵袭能力(P<0.05),促进细胞凋亡(P<0.05);在敲低EPHA2表达的基础上,敲低TSC1促进mTOR磷酸化可部分逆转Si-EPHA2对膀胱癌细胞生物学行为的影响(P<0.05)。 结论 敲低EPHA2可靶向抑制膀胱癌细胞mTOR磷酸化,增强自噬,抑制膀胱癌细胞的增殖、迁移和侵袭能力,促进膀胱癌细胞凋亡。 -
关键词:
- Ephrin A型受体2 /
- 膀胱癌 /
- 雷帕霉素靶蛋白 /
- 自噬
Abstract:Objective To explore the molecular mechanism by which Si-EPHA2 interferes with the biological behaviour of bladder cancer cells by targeting mTOR autophagy pathways. Methods The expression levels of EPHA2 in bladder cancer tissues and paracancerous tissues, as well as bladder cancer cells (T24) and normal urinary tract epithelial cells (SV-HUC-1) were examined by Western blotting assay and qRT-PCR assay. The expression of EPHA2 was knocked down in bladder cancer T24 cells by siRNA transfection to constitute an experimental model of bladder cancer cells with inhibited EPHA2 expression, and the cells were divided into si-NC blank for control group, and si-EPHA2 for experimental group. Changes in bladder cancer cell proliferation were detected by CCK 8 assay, changes in bladder cancer cell migration and invasion by Transwell assay, and changes in bladder cancer cell apoptosis by flow cytometry assay; the level of bladder cancer mTOR phosphorylation level and the expression of autophagy marker LC3 were detected by Western blotting assay after knockdown of EPHA2 expression; Knockdown of TSC1 was continued on top of knockdown of EPHA2-expressing T24 cells to detect changes in bladder cancer cell biology. Results EPHA2 showed higher expression levels in bladder cancer tissues and cells (P < 0.05); knockdown of EPHA2 decreased mTOR phosphorylation levels and increased autophagy levels (P < 0.05); knockdown of EPHA2 significantly inhibited the proliferation, migration and invasion ability of bladder cancer cells (P < 0.05) and promoted apoptosis (P < 0.05); on the basis of knockdown of EPHA2 expression, knockdown of TSC1 to promote mTOR phosphorylation partially reversed the effect of Si-EPHA2 on the biological behavior of bladder cancer cells (P < 0.05). Conclusion Knockdown of EPHA2 can target and inhibit mTOR phosphorylation in bladder cancer cells, enhance autophagy, inhibit the proliferation, migration and invasion ability of bladder cancer cell. -
Key words:
- Ephrin type A receptor 2 /
- Bladder cancer /
- Mammalian target of rapamycin /
- Autophagy
-
表 1 PCR引物序列
Table 1. PCR primer sequences
基因 引物序列(5’-3’) EPHA2-F CTGCTCGCCTGGATT EPHA2-R ACGGCTGTGAGGTAGTG GAPDH-F GGAGCGAGATCCCTCCAAAAT GAPDH-R GGCTGTTGTCATACTTCTCATGG -
[1] 刘文龙, 任明华. 饮食与膀胱癌关系的研究进展[J]. 临床与病理杂志, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htmLIU W L, REN M H. Research progress on the relationship between Diet and bladder cancer[J]. JCPR, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htm [2] CHEN Y, ZHAO S M, ZHANG X F, et al. Research progress on the bladder tumor markers in urine[J]. IMHGN, 2020, 26(2): 293-296. [3] JANES P W, VAIl M E, ERNST M, et al. Eph receptors in the immunosuppressive tumor microenvironment[J]. Cancer Res, 2021, 81(4): 801-805. doi: 10.1158/0008-5472.CAN-20-3047 [4] LIU B B, SUN W, GAO W Y, et al. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis[J]. BMC Cancer, 2020, 20(1): 1019. doi: 10.1186/s12885-020-07523-8 [5] WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. doi: 10.3390/cells8091075 [6] CHEN Z H, LIU Z T, ZHANG M Q, et al. EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice[J]. Int J Cancer, 2019, 145(9): 2440-2449. doi: 10.1002/ijc.32313 [7] 曹振学, 郭园园, 刘贝贝, 等. miR-15a与临床膀胱癌患者术后复发的相关性分析[J]. 中华全科医学, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857CAO Z X, GUO Y Y, LIU B B, et al. Correlation analysis of mir-15a and postoperative recurrence amongst patients with bladder carcinoma[J]. Chinese Journal of General Practice, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857 [8] LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. doi: 10.1001/jama.2020.17598 [9] HARSANYI S, NOVAKOVA Z V, BEVIZOVA K, et al. Biomarkers of bladder cancer: cell-free DNA, epigenetic modifications and non-coding RNAs[J]. Int J Mol Sci, 2022, 23(21): 13206. DOI: 10.3390/ijms232113206. [10] WEN Y C, DU M K, LI M W, et al. EphA2-positive human umbilical cord-derived mesenchymal stem cells exert anti-fibrosis and immunomodulatory activities via secretion of prostaglandin E2[J]. Taiwan J Obstet Gynecol, 2018, 57(5): 722-725. doi: 10.1016/j.tjog.2018.08.020 [11] WILSON K, SHIUAN E, BRANTLEY-SIEDERS D M. Oncogenic functions and therapeutic targeting of EphA2 in cancer[J]. Oncogene, 2021, 40(14): 2483-2495. doi: 10.1038/s41388-021-01714-8 [12] PENG G R, MENG H X, PAN H X, et al. CircRNA 001418 promoted cell growth and metastasis of bladder carcinoma via EphA2 by miR-1297[J]. Curr Mol Pharmacol, 2021, 14(1): 68-78. [13] ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer, 2018, 124(16): 3307-3318. doi: 10.1002/cncr.31335 [14] KUMAR A V, MILLS J, LAPIERRE L R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging[J]. Front Cell Dev Biol, 2022, 10: 793328. DOI: 10.3389/fcell.2022.793328. [15] MITTAL V. Epithelial mesenchymal transition in tumor metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412. doi: 10.1146/annurev-pathol-020117-043854 [16] BI J M, LIU H W, DONG W, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence[J]. Mol Cancer, 2019, 18(1): 133. doi: 10.1186/s12943-019-1060-9 [17] WANG Y, HU Y S, LI M L, et al. Up regulation of miR-184 inhibits the proliferation, invasion and migration of bladder cancer cells by targeting AGO2 via AKT/mTOR signaling pathway[J]. J Mod Urol, 2020, 25(7): 631-637. [18] 吕建阳, 李振国, 陈林, 等. CerS2对膀胱癌细胞增殖、迁移及AKT/mTOR信号通路的影响[J]. 现代肿瘤医学, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001LYU J Y, LI Z G, CHEN L, et al. Effects of CerS2 on bladder cancer cell proliferation, migration and AKT/mTOR signaling pathway[J]. Journal of Modern Oncology, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001 [19] COSTA R L B, HAN H S, GRADISHAR W J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406. [20] LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. [21] MALLELA K, KUMAR A. Role of TSC1 in physiology and diseases[J]. Mol Cell Biochem, 2021, 476(6): 2269-2282. [22] 郭晓强. 雷帕霉素靶蛋白: 细胞生长调控之门[J]. 自然杂志, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htmGUO X Q. TOR(target of rapamycin): the gate of cell growth[J]. Chinese Journal of Nature, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htm [23] TESSIRI S, TECHASEN A, KONGPETCH S, et al. Therapeutic targeting of ARID1A and PI3K/AKT pathway alterations in cholangiocarcinoma[J]. Peer J, 2022, 10: e12750. DOI: 10.7717/peerj.12750. [24] ZHAO P, JIANG D W, HUANG Y C, et al. EphA2: a promising therapeutic target in breast cancer[J]. J Genet Genomics, 2021, 48(4): 261-267. [25] WANG F Q, ZHANG H Z, CHENG Z G. EPHA2 promotes the invasion and migration of human tongue squamous cell carcinoma Cal-27 cells by enhancing AKT/mTOR signaling pathway[J]. Biomed Res Int, 2021: 4219690. DOI: 10.1155/2021/4219690. -