留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

敲低EPHA2通过mTOR磷酸化调控膀胱癌细胞自噬和生物学行为

张永琪 邹震海 吴梦琦 刘贝贝 郭园园 刘建民

张永琪, 邹震海, 吴梦琦, 刘贝贝, 郭园园, 刘建民. 敲低EPHA2通过mTOR磷酸化调控膀胱癌细胞自噬和生物学行为[J]. 中华全科医学, 2023, 21(7): 1117-1120. doi: 10.16766/j.cnki.issn.1674-4152.003063
引用本文: 张永琪, 邹震海, 吴梦琦, 刘贝贝, 郭园园, 刘建民. 敲低EPHA2通过mTOR磷酸化调控膀胱癌细胞自噬和生物学行为[J]. 中华全科医学, 2023, 21(7): 1117-1120. doi: 10.16766/j.cnki.issn.1674-4152.003063
ZHANG Yongqi, ZOU Zhenhai, WU Mengqi, LIU Beibei, GUO Yuanyuan, LIU Jianmin. Knockdown of EPHA2 regulates autophagy and biological behavior of bladder cancer cell through mTOR phosphorylation[J]. Chinese Journal of General Practice, 2023, 21(7): 1117-1120. doi: 10.16766/j.cnki.issn.1674-4152.003063
Citation: ZHANG Yongqi, ZOU Zhenhai, WU Mengqi, LIU Beibei, GUO Yuanyuan, LIU Jianmin. Knockdown of EPHA2 regulates autophagy and biological behavior of bladder cancer cell through mTOR phosphorylation[J]. Chinese Journal of General Practice, 2023, 21(7): 1117-1120. doi: 10.16766/j.cnki.issn.1674-4152.003063

敲低EPHA2通过mTOR磷酸化调控膀胱癌细胞自噬和生物学行为

doi: 10.16766/j.cnki.issn.1674-4152.003063
基金项目: 

安徽省卫生健康委科研项目重点项目 AHWJ2021-a007

蚌埠医学院研究生科研创新计划项目 Byycx21081

详细信息
    通讯作者:

    刘建民,E-mail: LIU-john-jm@sina.com

  • 中图分类号: R737.14  R730.43

Knockdown of EPHA2 regulates autophagy and biological behavior of bladder cancer cell through mTOR phosphorylation

  • 摘要:   目的  探究Si-EPHA2通过靶向mTOR自噬通路干扰膀胱癌细胞生物学行为的分子机制。  方法  通过Western blotting实验和qRT-PCR实验检测EPHA2在膀胱癌组织和癌旁组织以及膀胱癌细胞(T24)和正常尿路上皮细胞(SV-HUC-1)中的表达水平。通过siRNA转染敲低膀胱癌T24细胞中EPHA2的表达,构成一个抑制EPHA2表达的膀胱癌细胞实验模型,将细胞分成si-NC的空白对照组和si-EPHA2实验组。通过CCK-8实验检测膀胱癌细胞增殖的变化,Transwell实验检测膀胱癌细胞迁移和侵袭的变化,流式细胞学实验检测膀胱癌细胞凋亡的变化;通过Western blotting实验检测敲低EPHA2表达后膀胱癌mTOR磷酸化水平及自噬标记物LC3的表达;在敲低EPHA2表达的T24细胞基础上继续敲低TSC1,检测膀胱癌细胞生物学改变。  结果  EPHA2在膀胱癌组织和细胞中表现出较高的表达水平(P<0.05);敲低EPHA2降低了mTOR磷酸化水平,自噬水平增加(P<0.05);敲低EPHA2显著抑制了膀胱癌细胞的增殖、迁移和侵袭能力(P<0.05),促进细胞凋亡(P<0.05);在敲低EPHA2表达的基础上,敲低TSC1促进mTOR磷酸化可部分逆转Si-EPHA2对膀胱癌细胞生物学行为的影响(P<0.05)。  结论  敲低EPHA2可靶向抑制膀胱癌细胞mTOR磷酸化,增强自噬,抑制膀胱癌细胞的增殖、迁移和侵袭能力,促进膀胱癌细胞凋亡。

     

  • 图  1  EPHA2对膀胱癌细胞增殖、迁移、侵袭及凋亡的影响

    注:aP < 0.05。

    Figure  1.  Effects of EPHA2 on proliferation, migration, invasion and apoptosis of bladder cancer cells

    图  2  EPHA2靶向mTOR轴调控膀胱癌细胞增殖、迁移、侵袭及凋亡

    Figure  2.  EPHA2 targets the mTOR axis to regulate the proliferation, migration, invasion and apoptosis of bladder cancer cells

    表  1  PCR引物序列

    Table  1.   PCR primer sequences

    基因 引物序列(5’-3’)
    EPHA2-F CTGCTCGCCTGGATT
    EPHA2-R ACGGCTGTGAGGTAGTG
    GAPDH-F GGAGCGAGATCCCTCCAAAAT
    GAPDH-R GGCTGTTGTCATACTTCTCATGG
    下载: 导出CSV
  • [1] 刘文龙, 任明华. 饮食与膀胱癌关系的研究进展[J]. 临床与病理杂志, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htm

    LIU W L, REN M H. Research progress on the relationship between Diet and bladder cancer[J]. JCPR, 2020, 40(7): 1851-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB202007036.htm
    [2] CHEN Y, ZHAO S M, ZHANG X F, et al. Research progress on the bladder tumor markers in urine[J]. IMHGN, 2020, 26(2): 293-296.
    [3] JANES P W, VAIl M E, ERNST M, et al. Eph receptors in the immunosuppressive tumor microenvironment[J]. Cancer Res, 2021, 81(4): 801-805. doi: 10.1158/0008-5472.CAN-20-3047
    [4] LIU B B, SUN W, GAO W Y, et al. microRNA-451a promoter methylation regulated by DNMT3B expedites bladder cancer development via the EPHA2/PI3K/AKT axis[J]. BMC Cancer, 2020, 20(1): 1019. doi: 10.1186/s12885-020-07523-8
    [5] WEI X Y, LUO L F, CHEN J Z. Roles of mTOR signaling in tissue regeneration[J]. Cells, 2019, 8(9): 1075. doi: 10.3390/cells8091075
    [6] CHEN Z H, LIU Z T, ZHANG M Q, et al. EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice[J]. Int J Cancer, 2019, 145(9): 2440-2449. doi: 10.1002/ijc.32313
    [7] 曹振学, 郭园园, 刘贝贝, 等. miR-15a与临床膀胱癌患者术后复发的相关性分析[J]. 中华全科医学, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857

    CAO Z X, GUO Y Y, LIU B B, et al. Correlation analysis of mir-15a and postoperative recurrence amongst patients with bladder carcinoma[J]. Chinese Journal of General Practice, 2021, 19(4): 547-549, 647. doi: 10.16766/j.cnki.issn.1674-4152.001857
    [8] LENIS A T, LEC P M, CHAMIE K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. doi: 10.1001/jama.2020.17598
    [9] HARSANYI S, NOVAKOVA Z V, BEVIZOVA K, et al. Biomarkers of bladder cancer: cell-free DNA, epigenetic modifications and non-coding RNAs[J]. Int J Mol Sci, 2022, 23(21): 13206. DOI: 10.3390/ijms232113206.
    [10] WEN Y C, DU M K, LI M W, et al. EphA2-positive human umbilical cord-derived mesenchymal stem cells exert anti-fibrosis and immunomodulatory activities via secretion of prostaglandin E2[J]. Taiwan J Obstet Gynecol, 2018, 57(5): 722-725. doi: 10.1016/j.tjog.2018.08.020
    [11] WILSON K, SHIUAN E, BRANTLEY-SIEDERS D M. Oncogenic functions and therapeutic targeting of EphA2 in cancer[J]. Oncogene, 2021, 40(14): 2483-2495. doi: 10.1038/s41388-021-01714-8
    [12] PENG G R, MENG H X, PAN H X, et al. CircRNA 001418 promoted cell growth and metastasis of bladder carcinoma via EphA2 by miR-1297[J]. Curr Mol Pharmacol, 2021, 14(1): 68-78.
    [13] ONORATI A V, DYCZYNSKI M, OJHA R, et al. Targeting autophagy in cancer[J]. Cancer, 2018, 124(16): 3307-3318. doi: 10.1002/cncr.31335
    [14] KUMAR A V, MILLS J, LAPIERRE L R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging[J]. Front Cell Dev Biol, 2022, 10: 793328. DOI: 10.3389/fcell.2022.793328.
    [15] MITTAL V. Epithelial mesenchymal transition in tumor metastasis[J]. Annu Rev Pathol, 2018, 13: 395-412. doi: 10.1146/annurev-pathol-020117-043854
    [16] BI J M, LIU H W, DONG W, et al. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence[J]. Mol Cancer, 2019, 18(1): 133. doi: 10.1186/s12943-019-1060-9
    [17] WANG Y, HU Y S, LI M L, et al. Up regulation of miR-184 inhibits the proliferation, invasion and migration of bladder cancer cells by targeting AGO2 via AKT/mTOR signaling pathway[J]. J Mod Urol, 2020, 25(7): 631-637.
    [18] 吕建阳, 李振国, 陈林, 等. CerS2对膀胱癌细胞增殖、迁移及AKT/mTOR信号通路的影响[J]. 现代肿瘤医学, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001

    LYU J Y, LI Z G, CHEN L, et al. Effects of CerS2 on bladder cancer cell proliferation, migration and AKT/mTOR signaling pathway[J]. Journal of Modern Oncology, 2021, 29(22): 3885-3889. doi: 10.3969/j.issn.1672-4992.2021.22.001
    [19] COSTA R L B, HAN H S, GRADISHAR W J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406.
    [20] LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203.
    [21] MALLELA K, KUMAR A. Role of TSC1 in physiology and diseases[J]. Mol Cell Biochem, 2021, 476(6): 2269-2282.
    [22] 郭晓强. 雷帕霉素靶蛋白: 细胞生长调控之门[J]. 自然杂志, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htm

    GUO X Q. TOR(target of rapamycin): the gate of cell growth[J]. Chinese Journal of Nature, 2018, 40(4): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201804013.htm
    [23] TESSIRI S, TECHASEN A, KONGPETCH S, et al. Therapeutic targeting of ARID1A and PI3K/AKT pathway alterations in cholangiocarcinoma[J]. Peer J, 2022, 10: e12750. DOI: 10.7717/peerj.12750.
    [24] ZHAO P, JIANG D W, HUANG Y C, et al. EphA2: a promising therapeutic target in breast cancer[J]. J Genet Genomics, 2021, 48(4): 261-267.
    [25] WANG F Q, ZHANG H Z, CHENG Z G. EPHA2 promotes the invasion and migration of human tongue squamous cell carcinoma Cal-27 cells by enhancing AKT/mTOR signaling pathway[J]. Biomed Res Int, 2021: 4219690. DOI: 10.1155/2021/4219690.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  29
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 网络出版日期:  2023-08-28

目录

    /

    返回文章
    返回