留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胰岛淀粉样多肽治疗阿尔茨海默病小鼠的circRNA和mRNA表达谱分析

李小雄 李金平 黄洁 马晶晶 侯明亮 马琳秋 王从过 周华东

李小雄, 李金平, 黄洁, 马晶晶, 侯明亮, 马琳秋, 王从过, 周华东. 胰岛淀粉样多肽治疗阿尔茨海默病小鼠的circRNA和mRNA表达谱分析[J]. 中华全科医学, 2023, 21(7): 1101-1104. doi: 10.16766/j.cnki.issn.1674-4152.003059
引用本文: 李小雄, 李金平, 黄洁, 马晶晶, 侯明亮, 马琳秋, 王从过, 周华东. 胰岛淀粉样多肽治疗阿尔茨海默病小鼠的circRNA和mRNA表达谱分析[J]. 中华全科医学, 2023, 21(7): 1101-1104. doi: 10.16766/j.cnki.issn.1674-4152.003059
LI Xiaoxiong, LI Jinping, HUANG Jie, MA Jingjing, HOU Mingliang, MA Linqiu, WANG Congguo, ZHOU Huadong. Analysis of circRNA and mRNA expression profiles in Alzheimer's disease mice treated with islet amyloid polypeptide[J]. Chinese Journal of General Practice, 2023, 21(7): 1101-1104. doi: 10.16766/j.cnki.issn.1674-4152.003059
Citation: LI Xiaoxiong, LI Jinping, HUANG Jie, MA Jingjing, HOU Mingliang, MA Linqiu, WANG Congguo, ZHOU Huadong. Analysis of circRNA and mRNA expression profiles in Alzheimer's disease mice treated with islet amyloid polypeptide[J]. Chinese Journal of General Practice, 2023, 21(7): 1101-1104. doi: 10.16766/j.cnki.issn.1674-4152.003059

胰岛淀粉样多肽治疗阿尔茨海默病小鼠的circRNA和mRNA表达谱分析

doi: 10.16766/j.cnki.issn.1674-4152.003059
基金项目: 

国家自然科学基金项目 81771177

详细信息
    通讯作者:

    周华东, E-mail:zhouhuad@163.com

  • 中图分类号: R749.16  R-332

Analysis of circRNA and mRNA expression profiles in Alzheimer's disease mice treated with islet amyloid polypeptide

  • 摘要:   目的  探究胰岛淀粉样多肽(IAPP)治疗阿尔茨海默病(AD)小鼠的脑组织环状RNA(circRNA)和信使RNA(mRNA)表达谱变化及分子机制。  方法  将6只APP/PS1小鼠按随机数字表法随机分为IAPP干预组和参照组,每组3只。干预组小鼠腹腔注射0.5 μmol/L的IAPP(200 μg/kg), 参照组小鼠注射相同剂量的磷酸缓冲盐溶液。使用基因芯片技术检测2组小鼠之间差异表达的circRNAs和mRNAs,通过qRT-PCR对芯片结果进行验证,并对差异表达的mRNAs进行GO和KEGG通路分析。  结果  按照差异倍数的绝对值(|FC|)≥1.5且P < 0.05的筛选标准, IAPP干预组与参照组之间有899个差异表达circRNAs,343个上调和556个下调,差异表达mRNAs有2 257个,1 310个上调和947个下调。qRT-PCR验证结果均与芯片结果一致。GO分析显示,差异表达mRNAs主要富集于G蛋白偶联受体、细胞代谢等生物功能;KEGG通路分析显示,差异表达mRNAs主要与柠檬酸循环、蛋白酶体、IL-17和趋化因子信号通路等相关。  结论  腹腔注射IAPP后AD小鼠脑组织中circRNAs和mRNAs表达谱发生显著变化,提示这些差异表达的circRNAs和mRNAs可能是IAPP治疗AD小鼠的关键机制。

     

  • 图  1  显著差异表达的mRNAs的KEGG通路富集分析

    注:A为显著表达上调的mRNAs富集通路;B为显著表达下调的mRNAs富集通路。

    Figure  1.  KEGG pathway enrichment analysis of significantly differentially expressed mRNAs

    表  1  目的基因引物名称、序列和长度

    Table  1.   Primer names, sequences and lengths of target genes

    基因名称 双向引物序列 产物长度
    (bp)
    mmu_circRNA_35991 正向: 5’-GGGGAACATTTTATCAAGGCT-3’ 119
    反向: 5’-TGAACTTTTACAAGGTCCAACG-3’
    mmu_circRNA_39224 正向: 5’-ACCAAACTCATTGATTTCCTGC-3’ 83
    反向: 5’-GCTTGCTCCAAACTTCGCTT-3’
    mmu_circRNA_43643 正向: 5’-CGAAGGCATGGAGACCTGTAA-3’ 89
    反向: 5’-GCAGCCTGTCATCTTCAATCA-3’
    mmu_circRNA_25778 正向: 5’-TGTTTGACCATCCAGACGCA-3’ 168
    反向: 5’-CAGGTTACAGTTGCTGACCAGTG-3’
    GAPDH 正向: 5’-CACTGAGCAAGAGAGGCCCTAT-3’ 144
    反向: 5’-GCAGCGAACTTTATTGATGGTATT-3’
    下载: 导出CSV

    表  2  IAPP干预组与参照组之间差异表达变化最显著的前10个circRNAs

    Table  2.   The top 10 circRNAs with the most significant differential expression changes between IAPP intervention group and control group

    circRNA 表达 差异倍数 P 基因名称
    mmu_circRNA_35991 上调 3.94 0.049 Vav3
    mmu_circRNA_21737 上调 3.89 0.002 Pde7b
    mmu_circRNA_39224 上调 3.84 0.021 Cit
    mmu_circRNA_44629 上调 3.52 0.032 Unc13c
    mmu_circRNA_014582 上调 2.99 0.035 Pard3
    mmu_circRNA_007951 下调 3.92 0.041 Samd1
    mmu_circRNA_38835 下调 2.93 0.001 Aasdh
    mmu_circRNA_29357 下调 2.75 0.002 Hic2
    mmu_circRNA_33015 下调 2.70 0.001 4930515L03Rik
    mmu_circRNA_36800 下调 2.69 0.043 Fktn
    下载: 导出CSV

    表  3  IAPP干预组与参照组之间差异表达变化最显著的前10个mRNAs

    Table  3.   The top 10 mRNAs with the most significant differential expression changes between IAPP intervention group and control group

    mRNA 表达 差异倍数 P 基因名称
    ENSMUST00000060125 上调 14.39 0.022 Scn4b
    ENSMUST00000036172 上调 8.54 0.015 Sgpp2
    ENSMUST00000111332 上调 6.94 0.007 Pcp4l1
    ENSMUST00000071093 上调 5.71 0.017 Rims3
    ENSMUST00000084650 上调 5.67 0.022 Gpr139
    ENSMUST00000089200 下调 77.76 0.002 Cst7
    ENSMUST00000040002 下调 14.17 0.049 Prr32
    ENSMUST00000173014 下调 11.79 0.006 Dio3
    ENSMUST00000001008 下调 9.29 0.001 Ccl3
    ENSMUST00000040655 下调 7.36 0.012 H2-Aa
    下载: 导出CSV

    表  4  IAPP干预组与参照组之间目的基因相对表达量水平(x±s)

    Table  4.   Relative expression levels of target genes between IAPP intervention group and control group (x±s)

    组别 n mmu_circRNA_35991 mmu_circRNA_39224 mmu_circRNA_43643 mmu_circRNA_25778
    IAPP干预组 3 25.23±8.33 12.63±0.50 4.67±1.18 0.30±0.10
    参照组 3 2.88±0.92 4.54±0.59 1.79±0.28 0.93±0.17
    t -4.626 -18.151 -4.108 5.686
    P 0.010 < 0.001 0.015 0.005
    下载: 导出CSV
  • [1] 王琼, 王国平. 阿尔茨海默病的诊断与治疗[J]. 中华全科医学, 2019, 17(8): 1255-1256. http://www.zhqkyx.net/cn/article/id/18f73bba-8d0a-4fc0-8880-f792d4b6bd77

    WANG Q, WANG G P. Diagnosis and treatment of Alzheimer's disease[J]. Chinese Journal of General Practice, 2019, 17(8): 1255-1256. http://www.zhqkyx.net/cn/article/id/18f73bba-8d0a-4fc0-8880-f792d4b6bd77
    [2] 邱聪龙, 张怡, 陈寿林, 等. 不同程度阿尔茨海默病患者血脂水平的研究[J]. 中华全科医学, 2020, 18(12): 2043-2046. doi: 10.16766/j.cnki.issn.1674-4152.001684

    QIU C L, ZHANG Y, CHEN S L, et al. A study of serum lipid levels in patients with different degrees of Alzheimer's disease[J]. Chinese Journal of General Practice, 2020, 18(12): 2043-2046. doi: 10.16766/j.cnki.issn.1674-4152.001684
    [3] MARMENTINI C, BRANCO R C S, BOSCHERO A C, et al. Islet amyloid toxicity: from genesis to counteracting mechanisms[J]. J Cell Physiol, 2022, 237(2): 1119-1142. doi: 10.1002/jcp.30600
    [4] BHARADWAJ P, SOLOMON T, SAHOO B R, et al. Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells[J]. Sci Rep, 2020, 10(1): 10356. DOI: 10.1038/s41598-020-66602-9.
    [5] DHARMARAJ G L, ARIGO F D, YOUNG K A, et al. Novel amylin analogues reduce amyloid-β cross-seeding aggregation and neurotoxicity[J]. J Alzheimers Dis, 2022, 87(1): 373-390. doi: 10.3233/JAD-215339
    [6] SINGH S, YANG F, SIVILS A, et al. Amylin and secretases in the pathology and treatment of Alzheimer's disease[J]. Biomolecules, 2022, 12(7): 996. doi: 10.3390/biom12070996
    [7] GAN Q N, YAO H B, NA H, et al. Effects of amylin against amyloid-β-induced tauopathy and synapse loss in primary neurons[J]. J Alzheimers Dis, 2019, 70(4): 1025-1040. doi: 10.3233/JAD-190161
    [8] HUANG A Q, ZHENG H X, WU Z Y, et al. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10(8): 3503-3517. doi: 10.7150/thno.42174
    [9] COCHRAN K R, VEERARAGHAVAN K, KUNDU G, et al. Systematic identification of circRNAs in Alzheimer's disease[J]. Genes(Basel), 2021, 12(8): 1258.
    [10] LIN Z J, TANG X Z, WAN J, et al. Functions and mechanisms of circular RNAs in regulating stem cell differentiation[J]. RNA Biol, 2021, 18(12): 2136-2149. doi: 10.1080/15476286.2021.1913551
    [11] SOUDY R, KIMURA R, PATEL A, et al. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model[J]. Sci Rep, 2019, 9(1): 10942. DOI: 10.1038/s41598-019-47255-9.
    [12] PATRICK S, CORRIGAN R, GRIZZANTI J, et al. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer's disease are associated with oxidative stress regulation mechanisms[J]. J Alzheimers Dis, 2019, 69(1): 157-168. doi: 10.3233/JAD-180421
    [13] JEONG J K, DOW S A, YOUNG C N. Sensory circumventricular organs, neuroendocrine control, and metabolic regulation[J]. Metabolites, 2021, 11(8): 494. doi: 10.3390/metabo11080494
    [14] SERVIZI S, CORRIGAN R R, CASADESUS G. The importance of understanding amylin signaling mechanisms for therapeutic development in the treatment of Alzheimer's disease[J]. Curr Pharm Des, 2020, 26(12): 1345-1355. doi: 10.2174/1381612826666200318151146
    [15] MA N N, TIE C R, YU B, et al. Circular RNAs regulate its parental genes transcription in the AD mouse model using two methods of library construction[J]. FASEB J, 2020, 34(8): 10342-10356. doi: 10.1096/fj.201903157R
    [16] WU K, NIE B, LI L Y, et al. Bioinformatics analysis of high frequency mutations in myelodysplastic syndrome-related patients[J]. Ann Transl Med, 2021, 9(19): 1491. doi: 10.21037/atm-21-4094
    [17] JO S L, YANG H, LEE S R, et al. Curcumae radix decreases neurodegenerative markers through glycolysis decrease and TCA cycle activation[J]. Nutrients, 2022, 14(8): 1587. doi: 10.3390/nu14081587
    [18] KRISHNA-K K, BABY N, RAGHURAMAN R, et al. Regulation of aberrant proteasome activity re-establishes plasticity and long-term memory in an animal model of Alzheimer's disease[J]. FASEB J, 2020, 34(7): 9466-9479. doi: 10.1096/fj.201902844RR
    [19] CHOCRON E S, MUNKÁCSY E, KIM H S, et al. Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer's-like pathology in mouse and fly APP overexpression models[J]. Sci Adv, 2022, 8(23): eabk2252. DOI: 10.1126/sciadv.abk2252.
    [20] CRISTIANO C, VOLPICELLI F, LIPPIELLO P, et al. Neutralization of IL-17 rescues amyloid-β-induced neuroinflammation and memory impairment[J]. Br J Pharmacol, 2019, 176(18): 3544-3557. doi: 10.1111/bph.14586
    [21] PARK J C, HAN S H, MOOK-JUNG I. Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review[J]. BMB Rep, 2020, 53(1): 10-19. doi: 10.5483/BMBRep.2020.53.1.309
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 网络出版日期:  2023-08-28

目录

    /

    返回文章
    返回