留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠-葡萄糖共转运蛋白2抑制剂对老年2型糖尿病患者发生肌肉减少症的影响

宋宝娜 林萍 王琴

宋宝娜, 林萍, 王琴. 钠-葡萄糖共转运蛋白2抑制剂对老年2型糖尿病患者发生肌肉减少症的影响[J]. 中华全科医学, 2023, 21(6): 1016-1020. doi: 10.16766/j.cnki.issn.1674-4152.003039
引用本文: 宋宝娜, 林萍, 王琴. 钠-葡萄糖共转运蛋白2抑制剂对老年2型糖尿病患者发生肌肉减少症的影响[J]. 中华全科医学, 2023, 21(6): 1016-1020. doi: 10.16766/j.cnki.issn.1674-4152.003039
SONG Baona, LIN Ping, WANG Qin. Effect of sodium-glucose cotransporter 2 inhibitor on sarcopenia in elderly patients with type 2 diabetes[J]. Chinese Journal of General Practice, 2023, 21(6): 1016-1020. doi: 10.16766/j.cnki.issn.1674-4152.003039
Citation: SONG Baona, LIN Ping, WANG Qin. Effect of sodium-glucose cotransporter 2 inhibitor on sarcopenia in elderly patients with type 2 diabetes[J]. Chinese Journal of General Practice, 2023, 21(6): 1016-1020. doi: 10.16766/j.cnki.issn.1674-4152.003039

钠-葡萄糖共转运蛋白2抑制剂对老年2型糖尿病患者发生肌肉减少症的影响

doi: 10.16766/j.cnki.issn.1674-4152.003039
基金项目: 

浙江省杭州市卫生计生科技计划重点项目 2018Z05

浙江省医药卫生科技计划面上项目 2019KY502

杭州市医学重点学科建设项目 杭卫发[2021]21号

详细信息
    通讯作者:

    林萍,E-mail: yjlp1@163.com

  • 中图分类号: R587.1  R592

Effect of sodium-glucose cotransporter 2 inhibitor on sarcopenia in elderly patients with type 2 diabetes

  • 摘要: 2型糖尿病是老年人常见的疾病之一,随着年龄的增加发病率增高。肌肉减少症简称肌少症,是一种与增龄相关的临床综合征。研究表明,肌少症在老年2型糖尿病患者中的发病率逐年增高。2型糖尿病合并肌少症的发病机制主要有:胰岛素抵抗、慢性炎症、氧化应激、线粒体功能障碍、周围神经病变及损伤、降糖药物的使用等。多种降糖药物例如双胍类(biguanides)、噻唑烷二酮类(thiazolidinediketones)、二肽激肽酶-4抑制剂(dipeptidyl peptidase-4 inhibitors,DPP-Ⅳ抑制剂)、胰高糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonist,GLP-1RA)、钠-葡萄糖共同转运体2抑制剂(sodium-glucose cotransporter-2 inhibitors, SGLT-2i)等均对肌少症的发生有影响。随着SGLT-2i在降糖治疗及心血管疾病治疗中的广泛应用,笔者发现,其对肌少症也有重要影响。SGLT-2i在老年2型糖尿病患者的使用过程中,能够优化人体结构,减少脂肪量但不会影响肌肉含量,不会增加骨折的发生率;可以通过肌肉和脂肪的调节与转录、提高氧化磷酸化及控制炎症等方面延缓肌少症的发生;可通过影响中枢神经系统,使患者的主动摄食量增加,从营养不良层面减少肌少症发生的风险。因此,SGLT-2i应用于老年2型糖尿病患者,不仅能起到降糖、保护心血管的作用,对延缓肌少症的发生也有重要的意义。SGLT-2i的使用对老年2型糖尿病合并肌少症患者的治疗来说,或许可以带来新思路、新靶点。

     

  • [1] 国家老年医学中心, 中华医学会老年医学分会, 中国老年保健协会糖尿病专业委员会. 中国老年糖尿病诊疗指南(2021年版)[J]. 中华老年医学杂志, 2021, 40(1): 1-33. doi: 10.3760/cma.j.issn.0254-9026.2021.01.001
    [2] LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 369: m997. DOI: 10.1136/bmj.m997.
    [3] AWAD S F, Al-MAWALI A, Al-LAWATI J A, et al. Forecasting the type 2 diabetes mellitus epidemic and the role of key risk factors in Oman up to 2050: mathematical modeling analyses[J]. J Diabetes Investig, 2021, 2(7): 1162-1174.
    [4] PAR A, HEGYI J P, VANCSA S, et al. Sarcopenia-2021: pathophysiology, diagnosis, therapy[J]. Orv Hetil, 2021, 162(1): 3-12. doi: 10.1556/650.2021.32015
    [5] 刘娟, 丁清清, 周白瑜, 等. 中国老年人肌少症诊疗专家共识(2021)[J]. 中华老年医学杂志, 2021, 40(8): 943-952. doi: 10.3760/cma.j.issn.0254-9026.2021.08.001

    LIU J, DING Q Q, ZHOU B Y, et al. Chinese expert consensus on diagnosis and treatment for elderly with sarcopenia(2021)[J]. Chinese Journal of Geriatrics, 2021, 40(8): 943-952. doi: 10.3760/cma.j.issn.0254-9026.2021.08.001
    [6] 刘利利, 赵柯湘, 罗成, 等. 重庆市主城区中老年体检人群肌肉减少症患病率调查及危险因素分析[J]. 中华全科医学, 2019, 17(10): 1762-1767. doi: 10.16766/j.cnki.issn.1674-4152.001050

    LIU L L, ZHAO K X, LUO C, et al. Prevalence and risk factors of sarcopenia in urban area of Chongqing[J]. Chinese Journal of General Practice, 2019, 17(10): 1762-1767. doi: 10.16766/j.cnki.issn.1674-4152.001050
    [7] FENG L, GAO Q, HU K, et al. Prevalence and risk factors of sarcopenia in patients with diabetes: a meta-analysis[J]. J Clin Endocrinol Metab, 2022, 107(5): 1470-1483. doi: 10.1210/clinem/dgab884
    [8] TAKAHASHI F, HASHIMOTO Y, KAJI A, et al. Sarcopenia is associated with a risk of mortality in people with type 2 diabetes mellitus[J]. Front Endocrinol (Lausanne), 2021, 12: 783363. DOI: 10.3389/fendo.2021.783363.
    [9] MU Z J, FU J L, SUN L N, et al. Associations between homocysteine, inflammatory cytokines and sarcopenia in Chinese older adults with type 2 diabetes[J]. BMC Geriatr, 2021, 21(1): 692. doi: 10.1186/s12877-021-02622-y
    [10] IZZO A, MASSIMINO E, RICCARDI G, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors[J]. Nutrients, 2021, 13(1): 183. doi: 10.3390/nu13010183
    [11] MASSIMINO E, IZZO A, RICCARDI G, et al. The impact of glucose-lowering drugs on sarcopenia in type 2 diabetes: current evidence and underlying mechanisms[J]. Cells, 2021, 10(8): 1958. doi: 10.3390/cells10081958
    [12] CHEN F, XU S, WANG Y, et al. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin[J]. J Diabetes Res, 2020, 2020: 3950404. DOI: 10.1155/2020/3950404.
    [13] HASSAN F E, SAKR H I, MOHIE P M, et al. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model[J]. Ann Med, 2021, 53(1): 1032-1040.
    [14] TSURUTANI Y, NAKAI K, INOUE K, et al. Comparative study of the effects of ipragliflozin and sitagliptin on multiple metabolic variables in Japanese patients with type 2 diabetes: a multicentre, randomized, prospective, open-label, active-controlled study[J]. Diabetes Obes Metab, 2018, 20(11): 2675-2679. doi: 10.1111/dom.13421
    [15] HONG Y, LEE J H, JEONG K W, et al. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy[J]. J Cachexia Sarcopenia Muscle, 2019, 10(4): 903-918. doi: 10.1002/jcsm.12434
    [16] GIUGLIANO D, LOGO M, SCAPPATICCIO L, et al. Sodium-glucose transporter-2 inhibitors for prevention and treatment of cardiorenal complications of type 2 diabetes[J]. Cardiovasc Diabetol, 2021, 20(1): 17. doi: 10.1186/s12933-021-01213-w
    [17] TILINCA M C, TIUCA R A, TILEA I, et al. The SGLT-2 inhibitors in personalized therapy of diabetes mellitus patients[J]. J Pers Med, 2021, 11(12): 1249. doi: 10.3390/jpm11121249
    [18] SANO M, MEGURO S, KAWAI T, et al. Increased grip strength with sodium-glucose cotransporter 2[J]. J Diabetes, 2016, 8(5): 736-737. doi: 10.1111/1753-0407.12402
    [19] KURIYAN R. Body composition techniques[J]. Indian J Med Res, 2018, 148(5): 648-658. doi: 10.4103/ijmr.IJMR_1777_18
    [20] SARGEANT J A, HENSON J, KING J A, et al. A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans[J]. Endocrinol Metab (Seoul), 2019, 34(3): 247-262. doi: 10.3803/EnM.2019.34.3.247
    [21] XU H Q, LIU J M, ZHANG X, et al. Estimation of skeletal muscle mass by bioimpedance and differences among skeletal muscle mass indices for assessing sarcopenia[J]. Clin Nutr, 2021, 40(4): 2308-2318. doi: 10.1016/j.clnu.2020.10.021
    [22] WALOWSKI C O, BRAUN W, MAISCH M J, et al. Reference values for skeletal muscle mass-current concepts and methodological considerations[J]. Nutrients, 2020, 12(3): 755. doi: 10.3390/nu12030755
    [23] SASAKI T, SUGAWARA M, FUKUDA M. SGLT2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT Study with luseogliflozin[J]. J Diabetes Investig, 2019, 10(1): 108-117. doi: 10.1111/jdi.12851
    [24] KAMEI S, IWAMOTO M, KAMEYAMA M, et al. Effect of tofogliflozin on body composition and glycemic control in Japanese subjects with type 2 diabetes mellitus[J]. J Diabetes Res, 2018, 2018: 6470137. DOI: 10.1155/2018/6470137.
    [25] MATSUBA I, TAKIHATA M, TAKAI M, et al. Effects of 1-year treatment with canagliflozin on body composition and total body water in patients with type 2 diabetes[J]. Diabetes Obes Metab, 2021, 23(12): 2614-2622. doi: 10.1111/dom.14508
    [26] INOUE H, MORINO K, UGI S, et al. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: a randomized clinical trial[J]. J Diabetes Investig, 2019, 10(4): 1012-1021. doi: 10.1111/jdi.12985
    [27] TOBITA H, SATO S, MIYAKE T, et al. Effects of dapagliflozin on body composition and liver tests in patients with nonalcoholic steatohepatitis associated with type 2 diabetes mellitus: a prospective, open-label, uncontrolled study[J]. Curr Ther Res Clin Exp, 2017, 87: 13-19. doi: 10.1016/j.curtheres.2017.07.002
    [28] SAKAMOTO M, GOTO Y, NAGAYAMA A, et al. Two-year administration of sodium-glucose co-transporter 2 inhibitor brought about marked reduction of body fat independent of skeletal muscle amount or glycemic improvement in Japanese patients with type 2 diabetes[J]. Diabetol Int, 2021, 13(1): 117-123.
    [29] BLAU J E, BAUMAN V, CONWAY E M, et al. Canagliflozin triggers the FGF23/1, 25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study[J]. JCI Insight, 2018, 3(8): e99123. DOI: 10.1172/jci.insight.99123.
    [30] BILEZIKIAN J P, WATTS N B, USISKIN K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab, 2016, 101(1): 44-51. doi: 10.1210/jc.2015-1860
    [31] ZHUO M, HAWLEY C E, PAIK J M, et al. Association of sodium-glucose cotransporter-2 inhibitors with fracture risk in older adults with type 2 diabetes[J]. JAMA Netw Open, 2021, 4(10): e2130762. DOI: 10.1001/jamanetworkopen.2021.30762.
    [32] FRALICK M, KIM S C, SCHNEEWEISS S, et al. Fracture risk after initiation of use of Canagliflozin: a cohort study[J]. Ann Intern Med, 2019, 170(3): 155-163. doi: 10.7326/M18-0567
    [33] THRAILKILL K M, BUNN R C, UPPUGANTI S, et al. Genetic ablation of SGLT2 function in mice impairs tissue mineral density but does not affect fracture resistance of bone[J]. Bone, 2020, 133: 115254. DOI: 10.1016/j.bone.2020.115254.
    [34] GERBER C, WANG X, DAVID V Q, et al. Long-term effects of SGLT-2 deletion on bone and mineral metabolism in mice[J]. JBMR Plus, 2021, 5(8): e10526. DOI: 10.1002/jbm4.10526.
    [35] BAMBA R, OKAMURA T, HASHIMOTO Y, et al. Extracellular lipidome change by an SGLT2 inhibitor, luseogliflozin, contributes to prevent skeletal muscle atrophy in db/db mice[J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 574-588. doi: 10.1002/jcsm.12814
    [36] YAMAKAGE H, TANAKA M, INOUE T, et al. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: a randomized, controlled trial[J]. J Diabetes Investig, 2020, 11(3): 653-661. doi: 10.1111/jdi.13179
    [37] JI L L, YEO D. Mitochondrial dysregulation and muscle disuse atrophy[J]. F1000 Res, 2019, 8: 1621. doi: 10.12688/f1000research.19139.1
    [38] OKAMURA T, HASHIMOTO Y, OSAKA T, et al. The sodium-glucose cotransporter 2 inhibitor luseogliflozin can suppress muscle atrophy in Db/Db mice by suppressing the expression of foxo1[J]. J Clin Biochem Nutr, 2019, 65(1): 23-28. doi: 10.3164/jcbn.18-114
    [39] NAMBU H, TAKADA S, FUKUSHIMA A, et al. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure[J]. European J Pharmacology, 2020, 866: 172810. DOI: 10.1016/j.ejphar.2019.172810.
    [40] XU L, NAGATA N, NAGASHIMADA M, et al. SGLT-2 inhibition by Empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice[J]. EBioMedicine, 2017, 20: 137-149. doi: 10.1016/j.ebiom.2017.05.028
    [41] PAN L, XIE W, FU X, et al. Inflammation and sarcopenia: a focus on circulating inflammatory cytokines[J]. Exp Gerontol, 2021, 154: 111544. doi: 10.1016/j.exger.2021.111544
    [42] NAZNIN F, SAKODA H, OKADA T, et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice[J]. European J Pharmacol, 2017, 794: 37-44. doi: 10.1016/j.ejphar.2016.11.028
    [43] TAKEDA K, ONO H, ISHIKAWA K, et al. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002104. DOI: 10.1136/bmjdrc-2020-002104.
  • 加载中
计量
  • 文章访问数:  148
  • HTML全文浏览量:  39
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 网络出版日期:  2023-08-26

目录

    /

    返回文章
    返回