A cohort study on the effect of air pollution on the risk of malignant tumor mortality in a district of Bengbu City from 2015 to 2020
-
摘要:
目的 探讨6种空气污染物对恶性肿瘤患者死亡风险的影响。 方法 本研究是采用蚌埠市禹会区2015—2020年恶性肿瘤的发病和死亡信息进行的一项回顾性队列研究。利用中国高分辨率的空气污染数据集(CHAP)收集PM2.5、PM10、NO2、CO、SO2和O3浓度,并分析6种空气污染物之间的Spearman等级相关系数。以6种空气污染物的第1三分位数等分点(Q1组)为基线组,应用Cox比例风险回归模型估计6种空气污染物与恶性肿瘤患者死亡风险的风险比(HR)及其95%的置信区间(95% CI)。 结果 本研究最终纳入蚌埠市禹会区2015—2020年恶性肿瘤患者3 840例,其中死亡人数为1 443例。Spearman相关分析显示O3与其他污染物之间呈负相关关系,而其他5种污染物互相之间呈正相关关系。Cox比例风险回归模型分析结果显示:除O3外,其他空气污染物在高浓度时与恶性肿瘤的死亡风险呈正相关关系,其中PM2.5的HR(4.553,95% CI:3.853~5.381)最大。O3与恶性肿瘤的死亡风险呈负相关关系。 结论 空气污染可以影响致癌过程,对确诊的恶性肿瘤患者死亡风险具有显著的影响。本研究为降低恶性肿瘤患者的死亡风险提供了重要的公共卫生意义。 -
关键词:
- 空气污染 /
- 恶性肿瘤 /
- 死亡风险 /
- Cox比例风险回归模型
Abstract:Objective To explore the impact of six types of air pollution on the risk of death in patients with malignancies. Methods This was a retrospective cohort study using the information on incidence and mortality of malignant tumors in Yuhui District, Bengbu City, from 2015 to 2020. PM2.5, PM10, NO2, CO, SO2, and O3 concentrations were collection of using a high-resolution air pollution dataset from China (CHAP) and analyzed by Spearman' s rank correlation coefficients between the six air pollutants. Using the first tri quantile (Q1 group) of the six air pollutants as the baseline group, risk ratios (HR) and their 95% confidence intervals (95% CI) for six types of air pollution and the risk of death in patients with malignancies were estimated by Cox proportional hazards models. Results This study finally included 3 840 cases of malignant tumors in Yuhui District, Bengbu City, from 2015 to 2020, of which 1 443 cases died. Spearman' s correlation showed a negative correlation between O3 and the other pollutants, while the other five had a positive correlation. Cox proportional risk regression model analysis showed that air pollutants other than O3 were positively associated with the risk of death from malignancy at high concentrations, with PM2.5 having the most significant HR (4.553, 95% CI: 3.853-5.381). O3 was negatively associated with the risk of death from malignancy. Conclusion Air pollution can influence carcinogenic processes and significantly impact the risk of death in patients with diagnosed malignancies. Since environmental factors are not usually used as survival healing factors after diagnosis, this study provides important public health implications. -
Key words:
- Air pollution /
- Malignant tumors /
- Risk of death /
- Cox proportional risk regression model
-
表 1 2015—2020年蚌埠市禹会区恶性肿瘤患者的基本特征
Table 1. Basic characteristics of patients with malignant tumors in Bengbu Yuxiang District, 2015-2020
变量 数值 死亡例数[例(%)] 1 443(37.58) 性别[例(%)] 男性 2 189(57.01) 女性 1 651(42.99) 年龄(x ±s,岁) 63.64±14.24 建成环境[M(P25, P75)] 人口密度(人/km2) 6 325(781, 10 503) 建筑密度 0.55(0.16, 0.85) 交叉口密度(个/km2) 84(20, 84) 土地利用混合度 1.20(0.22, 1.55) 公交站点密度(个/km2) 15.10(1.30, 20.00) NDVI 0.27(0.26, 0.46) 表 2 6种空气污染物三分位点浓度(x ±s)
Table 2. Trichotomous concentrations of six air pollutants(x ±s)
空气污染物 Q1 Q2 Q3 总计 PM2.5(μg/m3) 45.18±3.44 52.20±1.38 57.79±2.84 51.72±5.82 PM10(μg/m3) 87.68±4.08 95.42±1.04 100.25±3.93 94.45±6.15 NO2(μg/m3) 30.95±2.85 39.62±2.98 46.98±2.68 39.18±7.14 CO(mg/m3) 0.81±0.07 1.06±0.08 1.46±0.23 1.11±0.31 SO2(μg/m3) 7.84±1.37 13.73±2.06 23.13±4.40 14.90±6.94 O3(μg/m3) 92.96±4.82 100.09±1.22 104.32±1.84 99.13±5.60 表 3 空气污染物之间的Spearman等级相关系数(r值)
Table 3. Spearman' s rank correlation coefficient between air pollutants (rs values)
空气污染物 PM2.5 PM10 NO2 CO SO2 O3 PM2.5 1.000 PM10 0.850a 1.000 NO2 0.404a 0.345a 1.000 CO 0.809a 0.659a 0.673a 1.000 SO2 0.767a 0.634a 0.600a 0.965a 1.000 O3 -0.576a -0.453a -0.815a -0.890a -0.852a 1.000 注:aP < 0.001。 表 4 变量赋值方法
Table 4. Variable assignment description
变量 赋值方法 性别 男性=1,女性=2 状态 死亡=1,存活=2 分组 Q1组=1,Q2组=2,Q3组=3 表 5 空气污染与恶性肿瘤患者死亡风险的Cox比例风险回归模型分析(模型1a)
Table 5. Cox proportional risk regression model analysis of air pollution and risk of death in patients with malignancy (model 1a)
变量 B SE Wald χ2 P值 HR值 95% CI PM2.5 Q2 0.318 0.088 12.935 < 0.001 1.374 1.156~1.634 Q3 1.453 0.079 339.190 < 0.001 4.274 3.662~4.989 PM10 Q2 0.478 0.080 35.279 < 0.001 1.613 1.378~1.889 Q3 0.934 0.076 151.851 < 0.001 2.543 2.192~2.950 NO2 Q2 -0.313 0.077 16.455 < 0.001 0.731 0.629~0.851 Q3 0.668 0.062 116.551 < 0.001 1.949 1.726~2.200 CO Q2 -0.119 0.081 2.182 0.140 0.887 0.758~1.040 Q3 0.885 0.071 156.049 < 0.001 2.421 2.108~2.782 SO2 Q2 -0.268 0.074 13.234 < 0.001 0.765 0.662~0.884 Q3 0.289 0.068 18.082 < 0.001 1.335 1.169~1.525 O3 Q2 -0.310 0.062 25.337 < 0.001 0.733 0.650~0.828 Q3 0.756 0.068 122.868 < 0.001 0.470 0.411~0.537 注:a为未调整模型。 表 6 空气污染与恶性肿瘤患者死亡风险的Cox比例风险回归模型分析(模型2a)
Table 6. Cox proportional risk regression model analysis of air pollution and risk of death in patients with malignancy (model 2a)
变量 B SE Wald χ2 P值 HR值 95% CI PM2.5 Q2 0.268 0.088 9.170 0.002 1.307 1.099~1.555 Q3 1.350 0.079 291.033 < 0.001 3.856 3.302~4.503 PM10 Q2 0.425 0.081 27.736 < 0.001 1.529 1.305~1.791 Q3 0.827 0.076 118.372 < 0.001 2.285 1.969~2.652 NO2 Q2 -0.259 0.077 11.247 0.001 0.772 0.663~0.898 Q3 0.626 0.062 102.176 < 0.001 1.870 1.656~2.111 CO Q2 -0.152 0.081 3.542 0.060 0.859 0.733~1.006 Q3 0.789 0.071 123.383 < 0.001 2.201 1.915~2.529 SO2 Q2 -0.308 0.074 17.446 < 0.001 0.735 0.636~0.849 Q3 0.197 0.068 8.323 0.004 1.217 1.065~1.392 O3 Q2 -0.259 0.062 17.574 < 0.001 0.772 0.684~0.871 Q3 -0.715 0.068 109.660 < 0.001 0.489 0.428~0.559 注:a为调整性别、年龄。 表 7 空气污染与恶性肿瘤患者死亡风险的Cox比例风险回归模型分析(模型3a)
Table 7. Cox proportional risk regression model analysis of air pollution and risk of death in patients with malignancy (model 3a)
变量 B SE Wald χ2 P值 HR值 95% CI PM2.5 Q2 0.305 0.090 11.493 0.001 1.357 1.137~1.619 Q3 1.516 0.085 316.363 < 0.001 4.553 3.853~5.381 PM10 Q2 0.439 0.082 28.447 < 0.001 1.551 1.320~1.823 Q3 0.784 0.078 101.593 < 0.001 2.190 1.880~2.550 NO2 Q2 0.071 0.118 0.365 0.546 1.074 0.853~1.352 Q3 1.064 0.138 59.746 < 0.001 2.899 2.213~3.796 CO Q2 -0.107 0.081 1.736 0.188 0.898 0.766~1.054 Q3 0.930 0.081 132.868 < 0.001 2.534 2.164~2.969 SO2 Q2 -0.289 0.074 15.226 < 0.001 0.749 0.648~0.866 Q3 0.197 0.071 7.803 0.005 1.218 1.061~1.399 O3 Q2 -0.380 0.066 32.871 < 0.001 0.684 0.601~0.779 Q3 -1.177 0.117 100.789 < 0.001 0.308 0.245~0.388 注:a为调整性别、年龄、人口密度、建筑密度、交叉口密度、土地利用混合度、公交站点密度和NDVI。 -
[1] BRAY F, LAVERSANNE M, WEIDERPASS E, et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide[J]. Cancer, 2021, 127(16): 3029-3030. doi: 10.1002/cncr.33587 [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660 [3] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZD202102001.htmLIU Z C, LI Z X, ZHANG Y, et al. Interpreting the 2020 global cancer statistics report[J]. Journal of Multidisciplinary Cancer Management, 2021, 7(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZD202102001.htm [4] BAI L, SHIN S, BURNETT R T, et al. Exposure to ambient air pollution and the incidence of lung cancer and breast cancer in the ontario population health and environment cohort[J]. Int J Cancer, 2020, 146(9): 2450-2459. doi: 10.1002/ijc.32575 [5] HVIDTFELDT U A, SEVERI G, ANDERSEN Z J, et al. Long-term low-level ambient air pollution exposure and risk of lung cancer-a pooled analysis of 7 European cohorts[J]. Environ Int, 2021, 146: 106249. DOI: 10.1016/j.envint.2020.106249. [6] LI Y C, CHIOU J Y, LIN C L, et al. The association between air pollution level and breast cancer risk in Taiwan[J]. Medicine, 2021, 100(19): e25637. DOI: 10.1097/MD.0000000000025637. [7] WHITE A J, GREGOIRE A M, NIEHOFF N M, et al. Air pollution and breast cancer risk in the Black Women' s Health Study[J]. Environ Res, 2021, 194: 110651. DOI: 10.1016/j.envres.2020.110651. [8] SO R, CHEN J, MEHTA A J, et al. Long-term exposure to air pollution and liver cancer incidence in six European cohorts[J]. Int J Cancer, 2021, 149(11): 1887-1897. doi: 10.1002/ijc.33743 [9] NAGEL G, STAFOGGIA M, PEDERSEN M, et al. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE)[J]. Int J Cancer, 2018, 143(7): 1632-1643. doi: 10.1002/ijc.31564 [10] MCKEON T P, ANIL V, PENNING T M, et al. Air pollution and lung cancer survival in Pennsylvania[J]. Lung Cancer, 2022, 170(6): 65-73. [11] CHENG I, YANG J, TSENG C, et al. Outdoor ambient air pollution and breast cancer survival among California participants of the Multiethnic Cohort Study[J]. Environ Int, 2022, 161(3): 107088. DOI: 10.1016/j.envint.2022.107088. [12] WEI J, LI Z Q, XUE W H, et al. The China High PM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China[J]. Environ Int, 2021, 146(1): 106290. DOI: 10.1016/j.envint.2020.106290. [13] COLEMAN N C, EZZATI M, MARSHALL J D, et al. Fine particulate matter air pollution and mortality risk among US cancer patients and survivors[J]. JNCI Cancer Spectr, 2021, 5(1): 1-9. [14] LI J X, LU X F, LIU F C, et al. Chronic effects of high fine particulate matter exposure on lung cancer in China[J]. Am J Respir Crit Care Med, 2020, 202(11): 1551-1559. doi: 10.1164/rccm.202001-0002OC [15] STAFOGGIA M, OFTEDAL B, CHEN J, et al. Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project[J]. Lancet Planet Health, 2022, 6(1): e9-e18. doi: 10.1016/S2542-5196(21)00277-1 [16] KAZEMIPARKOUHI F, EUM K, WANG B, et al. Long-term ozone exposures and cause-specific mortality in a US Medicare cohort[J]. J Expo Sci Env Epid, 2020, 30(4): 650-658. doi: 10.1038/s41370-019-0135-4 [17] LIU Q S J, GU X L, DENG F R, et al. Ambient particulate air pollution and circulating C-reactive protein level: a systematic review and meta-analysis[J]. Int J Hyg Environ Health, 2019, 222(5): 756-764. doi: 10.1016/j.ijheh.2019.05.005 [18] RIDER C F, CARLSTEN C. Air pollution and DNA methylation: effects of exposure in humans[J]. Clin Epigenetics, 2019, 11(1): 131. doi: 10.1186/s13148-019-0713-2 [19] ZHANG Y, WILSON R, HEISS J, et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality[J]. Nat Commun, 2017, 8: 14617. DOI: 10.1038/ncomms14617. [20] 李栗扬, 徐鹏, 王蓓蒂, 等. MicroRNA-429在妇科恶性肿瘤中的研究进展[J]. 中华全科医学, 2021, 19(6): 1013-1016, 1034. doi: 10.16766/j.cnki.issn.1674-4152.001973LI L, XU P, WANG B, et al. Research progress of MicroRNA-429 in gynecological malignant tumors[J]. Chinese Journal of General Practice, 2021, 19(6): 1013-1016, 1034. doi: 10.16766/j.cnki.issn.1674-4152.001973 -

计量
- 文章访问数: 286
- HTML全文浏览量: 78
- PDF下载量: 10
- 被引次数: 0