Value of the competing risk model including sonographically estimated mid-gestation fetal weight in predicting pre-eclampsia risk
-
摘要:
目的 探讨孕中期超声估计胎儿体重构建子痫前期风险的竞争风险模型,并分析模型效能。 方法 选取2019年3月—2020年12月于湖州市妇幼保健院接受常规孕检的2 234例妊娠19+0至24+6周的妇女为研究对象。记录所有受试者人口统计学特征和病史,超声估计胎儿体重及血流动力学指标。随访至分娩,记录随访过程中患者子痫前期发生情况,并以发生子痫前期患者的基本资料为基础,使用1∶1倾向性匹配法匹配未发生组患者,采用竞争风险模型评估妊娠妇女子痫前期发生的独立危险因素,构建子痫前期竞争风险模型,并分析其预测效能。 结果 纳入的2 234例孕妇中失访63例,最终纳入2 171例,其中86例发生子痫前期,为发生组。经倾向性1∶1匹配共60对匹配成功。竞争风险的多因素分析显示,高平均动脉压(MAP)、外周血管阻力(PVR)、平均子宫动脉指数(UtA-PI)孕妇发生子痫前期风险显著升高(SHR=1.150、1.102、1.168,均P < 0.05);超声估计高胎儿体重者发生子痫前期风险显著降低(SHR=0.110,P < 0.05)。根据竞争风险模型回归分析筛选的危险因素建立子痫前期发生风险预测列线图,C指数为0.785,一致性良好。 结论 高MAP、PVR、UtA-PI是子痫前期的危险因素,超声估计高胎儿体重是子痫前期的保护因素,基于此建立的子痫前期风险的竞争风险模型具有较好的预测能力及临床实用性,有助于对子痫前期高风险人群的筛查。 Abstract:Objective To develop a competing risk model using sonographically estimated mid-gestation fetal weight for predicting pre-eclampsia risk, and to assess the effectiveness of the model. Methods A total of 2 234 women from 19+0 to 24+6 weeks of gestation who underwent routine antenatal checks at Huzhou Maternity and Child Health Care Hospital from March 2019 to December 2020 were selected for this study. Demographic characteristics and medical history were recorded, and fetal weight and hemodynamic parameters were estimated by sonography. The incidence of pre-eclampsia was determined by a follow-up till delivery. General data were compared between women with and without pre-eclampsia matched in a 1∶1 ratio using propensity score matching. A competing risk model was used to screen independent risk factors for pre-eclampsia, and the identified risk factors were used to construct a competing risk model for pre-eclampsia, and the predictive performance of the model was analyzed. Results Of the 2 234 cases, 63 were lost to follow-up and the remaining 2 171 were finally included, including 86 with pre-eclampsia (pre-eclampsia group). Sixty pairs were successfully matched. Multivariate competing risk analysis showed that the risk of pre-eclampsia was significantly increased in pregnant women with high mean arterial pressure (MAP), peripheral vascular resistance (PVR) and mean uterine artery pulsatility index (UtA-PI, SHR=1.150, 1.102 and 1.168, all P < 0.05), whereas the risk was significantly lower in those with high fetal weight estimated using sonography (SHR=0.110, P < 0.05). The nomogram constructed using risk factors identified by competing-risks regression obtained a C-index of 0.785 in predicting the risk of pre-eclampsia, showing a high concordance between prediction and reality. Conclusion High MAP, PVR and UtA-PI are risk factors for pre-eclampsia, whereas high fetal weight at mid-gestation stage estimated by sonography is a protective factor for pre-eclampsia. The competing risk model for predicting the risk of pre-eclampsia by including the four aforementioned factors has a high predictive value and clinical practicality, which will facilitate screening for pre-eclampsia in high-risk groups. -
Key words:
- Mid-gestation stage /
- sonography /
- Fetal weight /
- Pre-eclampsia /
- Competitive risk model
-
表 1 倾向性匹配后2组孕妇年龄、孕周、产次及BMI比较
Table 1. Comparison of age, gestational age, parity, and BMI between the two groups after propensity matching
组别 例数 年龄(x±s,岁) 孕周(x±s,周) 产次(例) BMI(x±s) ≤2次 > 2次 发生组 60 25.32±3.45 21.42±1.47 45 15 26.92±3.88 未发生组 60 26.74±4.41 21.87±1.34 39 21 25.78±2.43 统计量 1.964a 1.752a 1.429b 1.929a P值 0.052 0.082 0.232 0.057 注:a为t值,b为χ2值。 表 2 2组孕妇一般资料比较
Table 2. Comparison of general information of pregnant women in two groups
组别 例数 吸烟[例(%)] 喝酒[例(%)] 高血压家族史[例(%)] 心率(x±s,次/min) MAP(x±s,mmHg) CO(x±s,L/min) PVR(x±s,dynes/s) UtA-PI(x±s) 发生组 60 5(8.33) 6(10.00) 21(35.00) 86.58±7.80 94.34±10.26 5.18±0.91 1 479.47±133.42 0.96±0.28 未发生组 60 9(15.00) 2(3.33) 12(20.00) 84.26±8.86 90.75±9.30 5.32±0.83 1 410.18±131.97 0.85±0.25 统计量 1.294a 1.205a 3.386a 1.522b 2.008b 0.880b 2.860b 2.270b P值 0.255 0.272 0.066 0.131 0.047 0.380 0.005 0.025 组别 例数 超声估计胎儿体重[M(P25, P75),kg] 谷丙转氨酶(x±s,mg/L) 尿酸(x±s,μmol/L) 谷草转氨酶(x±s,mmol/L) 血清肌酐(x±s,μmol/L) HCG(x±s,IU/mL) 发生组 60 0.52(0.42,0.66) 37.83±5.41 225.98±54.48 33.30±2.53 65.56±12.91 35.00±8.39 未发生组 60 0.67(0.57, 0.75) 36.26±4.32 218.54±50.96 32.56±2.22 62.83±19.80 33.60±8.25 统计量 2.921c 1.757b 0.773b 1.703b 0.895b 0.922b P值 0.004 0.082 0.441 0.091 0.373 0.359 注:a为χ2值,b为t值,c为U值。 表 3 子痫前期发生风险的竞争风险模型回归分析
Table 3. Regression analysis of competing risk models for the risk of developing preeclampsia
变量 B SE Wald χ2 P值 SHR 95% CI MAP 0.048 0.022 4.676 0.031 1.150 1.105~1.197 PVR 0.006 0.002 10.693 0.001 1.106 1.102~1.109 UtA-PI 2.586 1.090 5.629 0.018 1.282 1.168~1.513 超声估计胎儿体重 -4.597 1.489 9.529 0.002 0.110 0.001~0.187 -
[1] 吕英, 叶丽燕, 范徐妃, 等. 子痫前期P53和LncRNA TINCR表达及胎盘滋养层细胞凋亡研究[J]. 中华全科医学, 2021, 19(4): 611-613. doi: 10.16766/j.cnki.issn.1674-4152.001874LV Y, YE L Y, FAN X F, et al. Expression of P53 and LncRNA TINCR and apoptosis of placental trophoblast cells in preeclampsia[J]. Chinese Journal of General Practice, 2021, 19(4): 611-613. doi: 10.16766/j.cnki.issn.1674-4152.001874 [2] 顾蔚蓉, 李笑天. 子痫前期的干预与管理[J]. 中国实用妇科与产科杂志, 2020, 36(2): 120-123. doi: 10.19538/j.fk2020020108GU W R, LI X T Intervention and management of preeclampsia[J]. Chinese Journal of Practical Gynecology and Obstetrics, 2020, 36(2): 120-123. doi: 10.19538/j.fk2020020108 [3] SERRA B, MENDOZA M, SCAZZOCCHIO E, et al. A new model for screening for early-onset preeclampsia[J]. Am J Obstet Gynecol, 2020, 222(6): 608. e1-608. e18. DOI: 10.1016/j.ajog.2020.01.020. [4] BARTSCH E, MEDCALF K E, PARK A L, et al. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies[J]. BMJ, 2016, 353: i1753. DOI: 10.1136/bmj.i1753. [5] PEDROSO M A, PALMER K R, HODGES R J, et al. Uterine artery doppler in screening for preeclampsia and fetal growth restriction[J]. Rev Bras Ginecol Obstet, 2018, 40(5): 287-293. doi: 10.1055/s-0038-1660777 [6] MARASCIULO F, ORABONA R, FRATELLI N, et al. Preeclampsia and late fetal growth restriction[J]. Minerva Obstet Gynecol, 2021, 73(4): 435-441. [7] FARAH O, NGUYEN C, TEKKATTE C, et al. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction[J]. Placenta, 2020, 102(1): 4-9. [8] HADLOCK F P, HARRIST R B, SHARMAN R S, et al. Estimation of fetal weight with the use of head, body, and femur measurements: a prospective study[J]. Am J Obstet Gynecol, 1985, 151(3): 333-337. doi: 10.1016/0002-9378(85)90298-4 [9] 中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2015)[J]. 中华妇产科杂志, 2015, 50(10): 721-728. doi: 10.3760/cma.j.issn.0529-567x.2015.10.001Pregnancy-induced hypertension Disease Group, Chinese Society of Obstetrics and Gynecology. Guidelines for Diagnosis and Treatment of Hypertensive Diseases during Pregnancy (2015)[J]. Chinese Journal of Obstetrics and Gynecology, 2015, 50(10): 721-728. doi: 10.3760/cma.j.issn.0529-567x.2015.10.001 [10] 严檬洁, 谷茂红, 徐友娣. 热休克蛋白70与重度子痫前期的临床研究[J]. 中华全科医学, 2021, 19(11): 1884-1887. doi: 10.16766/j.cnki.issn.1674-4152.002192YAN M J, GU M H, XU Y D. Clinical study on heat shock protein 70 and severe preeclampsia[J]. Chinese Journal of General Practice, 2021, 19(11): 1884-1887. doi: 10.16766/j.cnki.issn.1674-4152.002192 [11] ROBERGE S, BUJOLD E, NICOLAIDES K H. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis[J]. Am J Obstet Gynecol, 2018, 218(3): 287-293. e1. doi: 10.1016/j.ajog.2017.11.561 [12] ZOTOVA T Y, BLAGONRAVOV M L, LAPAEV N N, et al. Hemodynamic allostasis of pregnant women against the background of preeclampsia[J]. Bull Exp Biol Med, 2018, 165(4): 440-444. doi: 10.1007/s10517-018-4189-4 [13] PHOPPS E A, THADHANI R, BENZING T, et al. Author correction: pre-eclampsia: pathogenesis, novel diagnostics and therapies[J]. Nat Rev Nephrol, 2019, 15(6): 386. doi: 10.1038/s41581-019-0156-1 [14] SOTIRIADIS A, ELEFTHERIADES M, PAPADOPDULOS V, et al. Divergence of estimated fetal weight and birth weight in singleton fetuses[J]. J Matern Fetal Neonatal Med, 2018, 31(6): 761-769. doi: 10.1080/14767058.2017.1297409 [15] TOMIMATSU T, MIMURA K, MATSUZAKI S, et al. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors[J]. Int J Mol Sci, 2019, 20(17): 42-46. [16] CHAU K, HENNESSY A, MAKRIS A. Placental growth factor and pre-eclampsia[J]. J Hum Hypertens, 2017, 31(12): 782-786. doi: 10.1038/jhh.2017.61 [17] DUHIG K E, MYERS J, SEED P T, et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial[J]. Lancet, 2019, 393(10183): 1807-1818. doi: 10.1016/S0140-6736(18)33212-4 [18] DUHIG K E, SEED P T, MYERS J E, et al. Placental growth factor testing for suspected pre-eclampsia: a cost-effectiveness analysis[J]. BJOG, 2019, 126(11): 1390-1398. [19] WEBSTER L M, CONTI-RAMSDEN F, SEED P T, et al. Impact of antihypertensive treatment on maternal and perinatal outcomes in pregnancy complicated by chronic hypertension: a systematic review and meta-analysis[J]. J Am Heart Assoc, 2017, 6(5): e005526. DOI: 10.1161/JAHA.117.005526. [20] SANTOS S, VOERMAN E, AMIANO P, et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: an individual participant data meta-analysis of European, North American and Australian cohorts[J]. BJOG, 2019, 126(8): 984-995. [21] LITWINSKA M, LITWINSKA E, LISNERE K, et al. Stratification of pregnancy care based on risk of pre-eclampsia derived from uterine artery Doppler at 19-24 weeks' gestation[J]. Ultrasound Obstet Gynecol, 2021, 58(1): 67-76. [22] FREI L, WRIGHT A, SYNGELAKI A, et al. Estimated fetal weight at mid-gestation in prediction of pre-eclampsia in singleton pregnancy [J]. Ultrasound Obstet Gynecol, 2022, 59(3): 335-341. -