The changes and clinical significance of serum Rac1 levels in children with bronchial asthma
-
摘要:
目的 通过检测支气管哮喘患儿血清Ras相关的C3肉毒素底物1(Rac1)水平变化,探讨其与患儿病情严重程度及预后的关系。 方法 选择2019年1月—2022年1月新疆医科大学第一附属医院收治的支气管哮喘患儿150例为观察组,根据病情严重程度分为轻度组(49例)、中度组(59例)、重度组(42例),以健康儿童80例为对照组,采用RT-PCR法检测受检者血清单个核细胞Rac1 mRNA水平,采用Pearson分析Rac1 mRNA与患儿气道炎症反应及肺功能的相关性,采用logistic回归分析研究支气管哮喘患儿预后的危险因素。 结果 轻度组(0.14±0.03)、中度组(0.07±0.02)、重度组(0.06±0.03)的Rac1 mRNA均低于对照组(0.16±0.03),t=3.675、19.990、17.493,均P<0.05;Rac1 mRNA与哮喘患儿白介素-25(IL-25)、白介素-33(IL-33)、呼出气一氧化氮(FeNO)、免疫球蛋白E(IgE)呈明显负相关关系(r=-0.620、-0.691、-0.660、-0.634,均P<0.01),与第1秒用力呼气流量(FEV1)、FEV1/用力肺活量(FVC)、呼气流量峰值(PEF)呈明显正相关关系(r=0.648、0.582、0.522,均P<0.01)。Rac1 mRNA高水平为影响哮喘患儿预后的保护因素(OR=0.753, 95% CI:0.647~0.877,P<0.001)。 结论 支气管哮喘患儿血清Rac1水平较低,与气道炎症反应、肺功能下降相关。 Abstract:Objective Through detecting the changes of serum Ras-related C3 botulinum toxin substrate 1 (Rac1) levels in children with bronchial asthma, the relationship between them and the severity and prognosis of the children ' s disease was investigated. Methods One hundred and fifty children with bronchial asthma admitted to the First Affiliated Hospital of Xinjiang Medical University from January 2019 to January 2022 were selected as the observation group and divided into mild (49 cases), moderate (59 cases) and severe (42 cases) groups according to the severity of disease. Another 80 healthy children were selected as the control group. The Rac1 mRNA of serum monocyte cells was detected by RT-PCR. The correlation between Rac1 mRNA and the airway inflammatory response and lung function of the children was analyzed by Pearson, and the risk factors for the prognosis of children with bronchial asthma were analyzed by logistic regression. Results The Rac1 mRNA was lower in the mild (0.14±0.03), moderate (0.07±0.02) and severe (0.06±0.03) groups than that in the control group (0.16±0.03), t=3.675, 19.990, 17.493, all P < 0.05; Rac1 mRNA was significantly negatively correlated with IL-25, IL-33, fractional exhaled nitric oxide (FeNO), IgE (r=-0.620, -0.691, -0.660, -0.634, all P < 0.01) and positively correlated with the forced expiratory volume in one second (FEV1), FEV1/forced vital capacity (FVC), peak expiratory flow (PEF) in children with asthma (r=0.648, 0.582, 0.522, all P < 0.01). High level of Rac1 mRNA was a protective factor affecting the prognosis of children with asthma (OR=0.753, 95%CI: 0.647-0.877, P < 0.001). Conclusion Lower serum Rac1 levels in children with bronchial asthma are associated with airway inflammatory response and decreased lung function. -
表 1 不同病情严重程度哮喘患儿血清学指标比较(x ±s)
Table 1. Comparison of serological indexes in children with asthma of different severities(x ±s)
组别 例数 Rac1 mRNA IL-25(ng/L) IL-33(ng/L) FeNO(μg/m3) IgE(ng/mL) FEV1(%) FVC(%) FEV1/FVC PEF(%) 对照组 80 0.16±0.03 39.13±10.82 382.42±65.33 17.82±4.33 87.25±9.93 86.26±3.45 95.68±3.28 90.15±6.35 87.45±15.63 轻度组 49 0.14±0.03a 51.23±10.56a 403.65±75.13a 26.25±6.18a 109.26±11.45a 78.26±5.23a 93.00±4.35a 84.15±3.88a 68.41±5.23a 中度组 59 0.07±0.02ab 66.32±7.40ab 625.23±80.15ab 36.26±5.74ab 133.52±12.16ab 67.25±3.41ab 88.85±2.58ab 75.69±4.20ab 57.26±6.02ab 重度组 42 0.06±0.03abc 77.16±11.42abc 806.45±142.06abc 41.72±5.79abc 176.32±18.45abc 53.51±3.50abc 85.80±4.25abc 62.36±6.45abc 45.52±3.98abc F值 130.850 82.390 185.620 81.950 263.410 109.170 71.460 230.610 214.510 P值 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 注:与对照组比较,aP<0.05;与轻度组比较,bP<0.05;与中度组比较,cP<0.05。 表 2 Rac1 mRNA与哮喘患儿气道炎症反应及肺功能指标相关性分析
Table 2. Correlation analysis of Rac1 mRNA with airway inflammatory reaction and lung function index in children with asthma
指标 Rac1 mRNA r值 P值 气道炎症反应 IL-25 -0.620 <0.001 IL-33 -0.691 <0.001 FeNO -0.660 <0.001 IgE -0.634 <0.001 肺功能指标 FEV1 0.648 <0.001 FVC 0.574 <0.001 FEV1/FVC 0.582 <0.001 PEF 0.522 <0.001 表 3 不同预后哮喘患儿血清学指标比较(x ±s)
Table 3. Comparison of serological indexes in children with different prognosis(x ±s)
组别 例数 Rac1 mRNA IL-25(ng/L) IL-33(ng/L) FeNO(μg/m3) IgE(ng/mL) 完全控制组 63 0.15±0.04 48.26±12.33 415.23±79.49 32.62±7.80 105.62±13.52 部分控制组 46 0.09±0.03a 66.25±7.10a 643.20±71.26a 40.85±6.09a 140.20±11.59a 未控制组 41 0.05±0.02ab 82.33±11.58ab 852.36±105.14ab 45.26±6.20ab 170.38±20.49ab F值 123.620 127.080 335.150 45.330 229.660 P值 <0.001 <0.001 <0.001 <0.001 <0.001 注:与完全控制组比较,aP<0.05;与部分控制组比较,bP<0.05。 表 4 变量赋值情况
Table 4. Assignment of independent variables
变量 赋值方法 Rac1 mRNA ≥0.14=1, <0.14=2 IL-25 <53.26 ng/L=1, ≥53.26 ng/L=2 IL-33 <498.74 ng/L=1, ≥498.74 ng/L=2 FeNO <40.59 μg/m3=1, ≥40.59 μg/m3=2 IgE <119.25 ng/mL=1, ≥119.25 ng/mL=2 预后 完全控制=1,未完全控制=2 表 5 影响哮喘患儿预后的多因素logistic回归分析
Table 5. Multivariate logistic regression analysis of risk factors affecting the prognosis of children with asthma
变量 B SE Wald χ2 P值 OR值 95% CI Rac1 mRNA -0.283 0.078 13.241 <0.001 0.753 0.647~0.877 IL-25 0.720 0.263 7.337 0.007 2.054 1.125~3.456 IL-33 0.528 0.156 11.407 0.001 1.696 1.248~2.340 FeNO 0.836 0.277 9.108 0.003 2.308 1.341~3.972 IgE 0.339 0.151 5.052 0.025 1.403 1.032~1.889 -
[1] 徐莉莉, 张军, 尚璐璐, 等. N-乙酰半胱氨酸对哮喘小鼠模型气道炎症和氧化应激的影响[J]. 江苏大学学报: 医学版, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009XU L L, ZHANG J, SHANG L L, et al. Effect of N-acetylcysteine on airway inflammation and oxidative stress in asthmatic mice[J]. J Jiangsu Univ Med Ed, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009 [2] 王若熹, 韩利红. 肺功能和血浆IL-5及IL-8在不同表型哮喘间的差异性分析及风险预测[J]. 江苏大学学报: 医学版, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htmWANG RX, HAN LH. Difference analysis and risk prediction of pulmonary function and plasma IL-5 and IL-8 in different phenotypes of asthma[J]. J Jiangsu Univ Med Ed, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htm [3] SAKAI H, KAI Y, SATO K, et al. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction[J]. Eur J Pharmacol, 2018, 818: 74-83. doi: 10.1016/j.ejphar.2017.10.032 [4] 杨国建, 李敏. 1, 25二羟维生素D3对哮喘小鼠的Rac1-IL33-ILC2通路的作用[J]. 实用医院临床杂志, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001YANG G J, LI M. 1, 25 The effect of dihydroxyvitamin D3 on Rac1-IL33-ILC2 pathway in asthmatic mice[J]. J Pract Hosp, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001 [5] 周新, 张旻. 中国支气管哮喘防治指南(2020年版)解读[J]. 诊断学理论与实践, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htmZHOU X, ZHANG M. Interpretation of the Chinese guidelines for the prevention and treatment of bronchial asthma (2020 edition)[J]. Diagn Theory Pract, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htm [6] CHETTA A, CALZETTA L. Bronchial asthma: an update[J]. Minerva Med, 2022, 113(1): 1-3. [7] ZHANG J, ZHAO L, ZHAO D, et al. Reliability and validity of the Chinese version of the test for respiratory and asthma control in kids (TRACK) in preschool children with asthma: a prospective validation study[J]. BMJ Open, 2019, 9(8): e025378. DOI: 10.1136/bmjopen-2018-025378. [8] 张妍琦, 李鑫, 孙璐, 等. 布地格福吸入气雾剂治疗中、重度支气管哮喘患者的临床研究[J]. 中国临床药理学杂志, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htmZHANG Y Q, LI X, SUN L, et al. Clinical study of budesonide inhalation aerosol in the treatment of patients with moderate and severe bronchial asthma[J]. Chinese J Clin Pharmacol, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htm [9] GAO X G, JI C L, WANG J Q, et al. Maduramicin induces cardiotoxicity via Rac1 signaling-independent methuosis in H9c2 cells[J]. J Appl Toxicol, 2021, 41(12): 1937-1951. doi: 10.1002/jat.4175 [10] 秦丹凤, 胡晓峰, 陈庆青, 等. 哮喘患者血清Rac1表达水平及其与气道炎症相关性分析[J]. 临床军医杂志, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htmQIN D F, HU X F, CHEN Q Q, et al. Expression level of Rac1 in serum of asthmatic patients and its correlation with airway inflammation[J]. J Clin Mil Med, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htm [11] WAN J, CAO Y W, ABDELAZIZ M H, et al. Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma[J]. Scand J Immunol, 2019, 89(5): e12752. DOI: 10.1111/sji.12752. [12] KAI Y, MOTEGI M, SUZUKI Y, et al. Up-regulation of Rac1 in the bronchial smooth muscle of murine experimental asthma[J]. Basic Clin Pharmacol Toxicol, 2019, 125(1): 8-15. doi: 10.1111/bcpt.13204 [13] DILASSER F, ROSE L, HASSOUN D, et al. Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling[J]. Thorax, 2021, 76(4): 326-334. doi: 10.1136/thoraxjnl-2020-216271 [14] ZENG S L, CUI J, ZHANG Y T, et al. MicroRNA-98-5p inhibits IL-13-induced proliferation and migration of human airway smooth muscle cells by targeting RAC1[J]. Inflammation, 2022, 45(4): 1548-1558. doi: 10.1007/s10753-022-01640-1 [15] KUNC P, FABRY J, LUCANSKA M, et al. Biomarkers of bronchial asthma[J]. Physiol Res, 2020, 69(Suppl 1): S29-S34. [16] PEEBLES R S, ARONICA M A. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50. [17] MURDACA G, GRECO M, TONACCI A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases[J]. Int J Mol Sci, 2019, 20(23): 5856. [18] 缪晔红, 沈莹莹, 魏源, 等. FeNO、外周血EOS计数及血清总IgE对支气管哮喘的联合诊断价值探讨[J]. 国际呼吸杂志, 2022, 42(8): 583-588.MIAO Y H, SHEN Y Y, WEI Y, et al. Study on the combined diagnostic value of FeNO, peripheral blood EOS count and serum total IgE in bronchial asthma[J]. Internation J Respir Sci, 2022, 42(8): 583-588. [19] TOKI S, GOLENIEWSKA K, ZHANG J, et al. TSLP and IL-33 reciprocally promote each other ' s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617. [20] LOH Z, SIMPSON J, ULLAH A, et al. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling[J]. PLoS Pathog, 2020, 16(7): e1008651. DOI: 10.1371/journal.ppat.1008651. -

计量
- 文章访问数: 274
- HTML全文浏览量: 109
- PDF下载量: 21
- 被引次数: 0