留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

支气管哮喘患儿血清Rac1水平变化及临床意义

王亚南 戴倩倩 茹凉

王亚南, 戴倩倩, 茹凉. 支气管哮喘患儿血清Rac1水平变化及临床意义[J]. 中华全科医学, 2023, 21(5): 736-739. doi: 10.16766/j.cnki.issn.1674-4152.002971
引用本文: 王亚南, 戴倩倩, 茹凉. 支气管哮喘患儿血清Rac1水平变化及临床意义[J]. 中华全科医学, 2023, 21(5): 736-739. doi: 10.16766/j.cnki.issn.1674-4152.002971
WANG Yanan, DAI Qianqian, RU Liang. The changes and clinical significance of serum Rac1 levels in children with bronchial asthma[J]. Chinese Journal of General Practice, 2023, 21(5): 736-739. doi: 10.16766/j.cnki.issn.1674-4152.002971
Citation: WANG Yanan, DAI Qianqian, RU Liang. The changes and clinical significance of serum Rac1 levels in children with bronchial asthma[J]. Chinese Journal of General Practice, 2023, 21(5): 736-739. doi: 10.16766/j.cnki.issn.1674-4152.002971

支气管哮喘患儿血清Rac1水平变化及临床意义

doi: 10.16766/j.cnki.issn.1674-4152.002971
基金项目: 

新疆维吾尔自治区自然科学基金项目 2019D01C310

详细信息
    通讯作者:

    茹凉,E-mail: 18997953070@163.com

  • 中图分类号: R562.25 R725.6

The changes and clinical significance of serum Rac1 levels in children with bronchial asthma

  • 摘要:   目的  通过检测支气管哮喘患儿血清Ras相关的C3肉毒素底物1(Rac1)水平变化,探讨其与患儿病情严重程度及预后的关系。  方法  选择2019年1月—2022年1月新疆医科大学第一附属医院收治的支气管哮喘患儿150例为观察组,根据病情严重程度分为轻度组(49例)、中度组(59例)、重度组(42例),以健康儿童80例为对照组,采用RT-PCR法检测受检者血清单个核细胞Rac1 mRNA水平,采用Pearson分析Rac1 mRNA与患儿气道炎症反应及肺功能的相关性,采用logistic回归分析研究支气管哮喘患儿预后的危险因素。  结果  轻度组(0.14±0.03)、中度组(0.07±0.02)、重度组(0.06±0.03)的Rac1 mRNA均低于对照组(0.16±0.03),t=3.675、19.990、17.493,均P<0.05;Rac1 mRNA与哮喘患儿白介素-25(IL-25)、白介素-33(IL-33)、呼出气一氧化氮(FeNO)、免疫球蛋白E(IgE)呈明显负相关关系(r=-0.620、-0.691、-0.660、-0.634,均P<0.01),与第1秒用力呼气流量(FEV1)、FEV1/用力肺活量(FVC)、呼气流量峰值(PEF)呈明显正相关关系(r=0.648、0.582、0.522,均P<0.01)。Rac1 mRNA高水平为影响哮喘患儿预后的保护因素(OR=0.753, 95% CI:0.647~0.877,P<0.001)。  结论  支气管哮喘患儿血清Rac1水平较低,与气道炎症反应、肺功能下降相关。

     

  • 表  1  不同病情严重程度哮喘患儿血清学指标比较(x ±s)

    Table  1.   Comparison of serological indexes in children with asthma of different severities(x ±s)

    组别 例数 Rac1 mRNA IL-25(ng/L) IL-33(ng/L) FeNO(μg/m3) IgE(ng/mL) FEV1(%) FVC(%) FEV1/FVC PEF(%)
    对照组 80 0.16±0.03 39.13±10.82 382.42±65.33 17.82±4.33 87.25±9.93 86.26±3.45 95.68±3.28 90.15±6.35 87.45±15.63
    轻度组 49 0.14±0.03a 51.23±10.56a 403.65±75.13a 26.25±6.18a 109.26±11.45a 78.26±5.23a 93.00±4.35a 84.15±3.88a 68.41±5.23a
    中度组 59 0.07±0.02ab 66.32±7.40ab 625.23±80.15ab 36.26±5.74ab 133.52±12.16ab 67.25±3.41ab 88.85±2.58ab 75.69±4.20ab 57.26±6.02ab
    重度组 42 0.06±0.03abc 77.16±11.42abc 806.45±142.06abc 41.72±5.79abc 176.32±18.45abc 53.51±3.50abc 85.80±4.25abc 62.36±6.45abc 45.52±3.98abc
    F 130.850 82.390 185.620 81.950 263.410 109.170 71.460 230.610 214.510
    P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
    注:与对照组比较,aP<0.05;与轻度组比较,bP<0.05;与中度组比较,cP<0.05。
    下载: 导出CSV

    表  2  Rac1 mRNA与哮喘患儿气道炎症反应及肺功能指标相关性分析

    Table  2.   Correlation analysis of Rac1 mRNA with airway inflammatory reaction and lung function index in children with asthma

    指标 Rac1 mRNA
    r P
    气道炎症反应 IL-25 -0.620 <0.001
    IL-33 -0.691 <0.001
    FeNO -0.660 <0.001
    IgE -0.634 <0.001
    肺功能指标 FEV1 0.648 <0.001
    FVC 0.574 <0.001
    FEV1/FVC 0.582 <0.001
    PEF 0.522 <0.001
    下载: 导出CSV

    表  3  不同预后哮喘患儿血清学指标比较(x ±s)

    Table  3.   Comparison of serological indexes in children with different prognosis(x ±s)

    组别 例数 Rac1 mRNA IL-25(ng/L) IL-33(ng/L) FeNO(μg/m3) IgE(ng/mL)
    完全控制组 63 0.15±0.04 48.26±12.33 415.23±79.49 32.62±7.80 105.62±13.52
    部分控制组 46 0.09±0.03a 66.25±7.10a 643.20±71.26a 40.85±6.09a 140.20±11.59a
    未控制组 41 0.05±0.02ab 82.33±11.58ab 852.36±105.14ab 45.26±6.20ab 170.38±20.49ab
    F 123.620 127.080 335.150 45.330 229.660
    P <0.001 <0.001 <0.001 <0.001 <0.001
    注:与完全控制组比较,aP<0.05;与部分控制组比较,bP<0.05。
    下载: 导出CSV

    表  4  变量赋值情况

    Table  4.   Assignment of independent variables

    变量 赋值方法
    Rac1 mRNA ≥0.14=1, <0.14=2
    IL-25 <53.26 ng/L=1, ≥53.26 ng/L=2
    IL-33 <498.74 ng/L=1, ≥498.74 ng/L=2
    FeNO <40.59 μg/m3=1, ≥40.59 μg/m3=2
    IgE <119.25 ng/mL=1, ≥119.25 ng/mL=2
    预后 完全控制=1,未完全控制=2
    下载: 导出CSV

    表  5  影响哮喘患儿预后的多因素logistic回归分析

    Table  5.   Multivariate logistic regression analysis of risk factors affecting the prognosis of children with asthma

    变量 B SE Wald χ2 P OR 95% CI
    Rac1 mRNA -0.283 0.078 13.241 <0.001 0.753 0.647~0.877
    IL-25 0.720 0.263 7.337 0.007 2.054 1.125~3.456
    IL-33 0.528 0.156 11.407 0.001 1.696 1.248~2.340
    FeNO 0.836 0.277 9.108 0.003 2.308 1.341~3.972
    IgE 0.339 0.151 5.052 0.025 1.403 1.032~1.889
    下载: 导出CSV
  • [1] 徐莉莉, 张军, 尚璐璐, 等. N-乙酰半胱氨酸对哮喘小鼠模型气道炎症和氧化应激的影响[J]. 江苏大学学报: 医学版, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009

    XU L L, ZHANG J, SHANG L L, et al. Effect of N-acetylcysteine on airway inflammation and oxidative stress in asthmatic mice[J]. J Jiangsu Univ Med Ed, 2021, 31(1): 56-60. doi: 10.3969/j.issn.1671-7775.2021.01.009
    [2] 王若熹, 韩利红. 肺功能和血浆IL-5及IL-8在不同表型哮喘间的差异性分析及风险预测[J]. 江苏大学学报: 医学版, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htm

    WANG RX, HAN LH. Difference analysis and risk prediction of pulmonary function and plasma IL-5 and IL-8 in different phenotypes of asthma[J]. J Jiangsu Univ Med Ed, 2021, 31(6): 511-516. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202106010.htm
    [3] SAKAI H, KAI Y, SATO K, et al. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction[J]. Eur J Pharmacol, 2018, 818: 74-83. doi: 10.1016/j.ejphar.2017.10.032
    [4] 杨国建, 李敏. 1, 25二羟维生素D3对哮喘小鼠的Rac1-IL33-ILC2通路的作用[J]. 实用医院临床杂志, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001

    YANG G J, LI M. 1, 25 The effect of dihydroxyvitamin D3 on Rac1-IL33-ILC2 pathway in asthmatic mice[J]. J Pract Hosp, 2021, 18(1): 1-3. doi: 10.3969/j.issn.1672-6170.2021.01.001
    [5] 周新, 张旻. 中国支气管哮喘防治指南(2020年版)解读[J]. 诊断学理论与实践, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htm

    ZHOU X, ZHANG M. Interpretation of the Chinese guidelines for the prevention and treatment of bronchial asthma (2020 edition)[J]. Diagn Theory Pract, 2021, 20(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDLS202102004.htm
    [6] CHETTA A, CALZETTA L. Bronchial asthma: an update[J]. Minerva Med, 2022, 113(1): 1-3.
    [7] ZHANG J, ZHAO L, ZHAO D, et al. Reliability and validity of the Chinese version of the test for respiratory and asthma control in kids (TRACK) in preschool children with asthma: a prospective validation study[J]. BMJ Open, 2019, 9(8): e025378. DOI: 10.1136/bmjopen-2018-025378.
    [8] 张妍琦, 李鑫, 孙璐, 等. 布地格福吸入气雾剂治疗中、重度支气管哮喘患者的临床研究[J]. 中国临床药理学杂志, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htm

    ZHANG Y Q, LI X, SUN L, et al. Clinical study of budesonide inhalation aerosol in the treatment of patients with moderate and severe bronchial asthma[J]. Chinese J Clin Pharmacol, 2022, 38(1): 3-5, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202201001.htm
    [9] GAO X G, JI C L, WANG J Q, et al. Maduramicin induces cardiotoxicity via Rac1 signaling-independent methuosis in H9c2 cells[J]. J Appl Toxicol, 2021, 41(12): 1937-1951. doi: 10.1002/jat.4175
    [10] 秦丹凤, 胡晓峰, 陈庆青, 等. 哮喘患者血清Rac1表达水平及其与气道炎症相关性分析[J]. 临床军医杂志, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htm

    QIN D F, HU X F, CHEN Q Q, et al. Expression level of Rac1 in serum of asthmatic patients and its correlation with airway inflammation[J]. J Clin Mil Med, 2022, 50(1): 75-77. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGZ202201023.htm
    [11] WAN J, CAO Y W, ABDELAZIZ M H, et al. Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma[J]. Scand J Immunol, 2019, 89(5): e12752. DOI: 10.1111/sji.12752.
    [12] KAI Y, MOTEGI M, SUZUKI Y, et al. Up-regulation of Rac1 in the bronchial smooth muscle of murine experimental asthma[J]. Basic Clin Pharmacol Toxicol, 2019, 125(1): 8-15. doi: 10.1111/bcpt.13204
    [13] DILASSER F, ROSE L, HASSOUN D, et al. Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling[J]. Thorax, 2021, 76(4): 326-334. doi: 10.1136/thoraxjnl-2020-216271
    [14] ZENG S L, CUI J, ZHANG Y T, et al. MicroRNA-98-5p inhibits IL-13-induced proliferation and migration of human airway smooth muscle cells by targeting RAC1[J]. Inflammation, 2022, 45(4): 1548-1558. doi: 10.1007/s10753-022-01640-1
    [15] KUNC P, FABRY J, LUCANSKA M, et al. Biomarkers of bronchial asthma[J]. Physiol Res, 2020, 69(Suppl 1): S29-S34.
    [16] PEEBLES R S, ARONICA M A. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50.
    [17] MURDACA G, GRECO M, TONACCI A, et al. IL-33/IL-31 axis in immune-mediated and allergic diseases[J]. Int J Mol Sci, 2019, 20(23): 5856.
    [18] 缪晔红, 沈莹莹, 魏源, 等. FeNO、外周血EOS计数及血清总IgE对支气管哮喘的联合诊断价值探讨[J]. 国际呼吸杂志, 2022, 42(8): 583-588.

    MIAO Y H, SHEN Y Y, WEI Y, et al. Study on the combined diagnostic value of FeNO, peripheral blood EOS count and serum total IgE in bronchial asthma[J]. Internation J Respir Sci, 2022, 42(8): 583-588.
    [19] TOKI S, GOLENIEWSKA K, ZHANG J, et al. TSLP and IL-33 reciprocally promote each other ' s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617.
    [20] LOH Z, SIMPSON J, ULLAH A, et al. HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling[J]. PLoS Pathog, 2020, 16(7): e1008651. DOI: 10.1371/journal.ppat.1008651.
  • 加载中
表(5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  48
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17

目录

    /

    返回文章
    返回