留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲状腺乳头状癌相关ceRNA网络的生物信息学分析

夏文广 张浩 魏川雄 AliHaider 闭劲哲 曾江正

夏文广, 张浩, 魏川雄, AliHaider, 闭劲哲, 曾江正. 甲状腺乳头状癌相关ceRNA网络的生物信息学分析[J]. 中华全科医学, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
引用本文: 夏文广, 张浩, 魏川雄, AliHaider, 闭劲哲, 曾江正. 甲状腺乳头状癌相关ceRNA网络的生物信息学分析[J]. 中华全科医学, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
XIA Wenguang, ZHANG Hao, WEI Chuanxiong, Ali Haider, BI Jinzhe, ZENG Jiangzheng. Bioinformatics analysis of the competing endogenous RNA network associated with papillary thyroid carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962
Citation: XIA Wenguang, ZHANG Hao, WEI Chuanxiong, Ali Haider, BI Jinzhe, ZENG Jiangzheng. Bioinformatics analysis of the competing endogenous RNA network associated with papillary thyroid carcinoma[J]. Chinese Journal of General Practice, 2023, 21(4): 693-697. doi: 10.16766/j.cnki.issn.1674-4152.002962

甲状腺乳头状癌相关ceRNA网络的生物信息学分析

doi: 10.16766/j.cnki.issn.1674-4152.002962
基金项目: 

国家自然科学基金项目 82160556

海南省卫生健康行业科研项目 20A200204

详细信息
    通讯作者:

    张浩,E-mail:changgung1@163.com

  • 中图分类号: R736.1

Bioinformatics analysis of the competing endogenous RNA network associated with papillary thyroid carcinoma

  • 摘要:   目的  近些年由于高通量测序的发展,针对环状RNA(circRNA)的研究越来越多,但仍有大量的环状RNA有待探索,本文通过对甲状腺乳头状癌(PTC)中竞争性内源性RNA(ceRNA)的研究,构建circRNA-miRNA-mRNA的ceRNA网络,探索PTC中环状RNA潜在的调控机制,为临床寻找新的标志物或治疗靶点提供新的思路和见解。  方法  整合GEO和TCGA两大数据库,下载与PTC相关的芯片及临床数据,运用生物信息学方法构建与生存相关的ceRNA网络机制。  结果  两大数据库中共鉴定出16个环状RNA、199个miRNA和4 308个mRNA的差异表达基因,通过Cancer-Specific CircRNA Database预测环状RNA可能结合的miRNA并绘制韦恩图,将得到11个差异表达的miRNA通过TargetScan、miRDB两大数据库预测mRNA靶基因并整合,共得到751个差异表达的mRNA,通过三者之间作用关系整合成ceRNA网络并进行可视化,利用STRING网站工具构建蛋白质相互作用网络,计算并筛选出其中密度最高、接近中心性的前10个枢纽基因,GO和KEGG通路富集分析表明枢纽基因与某些癌症相关的生物学功能和途径密切相关。使用R语言中的生存包分析枢纽基因的预后意义,发现KCNA1和NLGN1与PTC患者的生存显著相关。  结论  本研究从PTC相关的环状RNA角度出发,探讨其通过ceRNA网络可能参与PTC的发生与发展过程,进一步加深对PTC发病机制和治疗的认识。

     

  • 图  1  差异表达的热图及火山图

    注:A为circRNA差异表达的热图;B为miRNA差异表达的火山图; C为mRNA差异表达的火山图。

    Figure  1.  Heat map and Volcano map of differential expression

    图  2  构建与甲状腺乳头状癌预后相关的ceRNA网络

    Figure  2.  Construction of ceRNA network related to the prognosis of thyroid papillary carcinoma

    图  3  枢纽基因的生存分析和ceRNA预后子网络

    注:A、B为KCNA1与NLGN1基因的生存分析;C为与生存分析相关的ceRNA子网络。

    Figure  3.  Survival analysis of hub genes and ceRNA prognostic subnetwork

  • [1] DU L, WANG Y, SUN X, et al. Thyroid cancer: trends in incidence, mortality and clinical-pathological patterns in Zhejiang Province, Southeast China[J]. BMC Cancer, 2018, 18(1): 291. doi: 10.1186/s12885-018-4081-7
    [2] 周溪, 沈严严. 超声及血清学指标诊断甲状腺结节的研究进展[J]. 现代医药卫生, 2020, 36(9): 1334-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS202009016.htm

    ZHOU X, SHEN Y Y. Progress in diagnosis of thyroid nodules by Ultrasonography and Serological Indexes[J]. Journal of Modern Medicine & Health, 2020, 36(9): 1334-1337. https://www.cnki.com.cn/Article/CJFDTOTAL-XYWS202009016.htm
    [3] SEIB C D, SOSA J A. Evolving Understanding of the Epidemiology of Thyroid Cancer[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 23-35. doi: 10.1016/j.ecl.2018.10.002
    [4] SHUKLA N, OSAZUWA-PETERS N, MEGWALU U C. Association between age and nodal metastasis in papillary thyroid carcinoma[J]. Otolaryngol Head Neck Surg, 2021, 165(1): 43-49. doi: 10.1177/0194599820966995
    [5] LU Y, JIANG L, CHEN C, et al. Clinicopathologic characteristics and outcomes of papillary thyroid carcinoma in younger patients[J]. Medicine (Baltimore), 2020, 99(15): e19795. DOI: 10.1097/MD.0000000000019795.
    [6] 郑媛媛, 李伟, 陈余清. 环状RNA与肿瘤相关性研究进展[J]. 中华全科医学, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896

    ZHENG Y Y, LI W, CHEN Y Q. Research progress on the correlation between circRNAs and tumors[J]. Chinese Journal of General Practice, 2019, 17(7): 1181-1185. doi: 10.16766/j.cnki.issn.1674-4152.000896
    [7] FAN J, RENY Y, XU W, et al. The prognostic and predictive significance of circRNA CDR1as in tumor progression[J]. Front Oncol, 2020, 10: 549982. DOI: 10.3389/fonc.2020.549982.
    [8] TANG Q, HANN S S. Biological roles and mechanisms of circular RNA in human cancers[J]. Onco Targets Ther, 2020, 13: 2067-2092. doi: 10.2147/OTT.S233672
    [9] LIU L, LIU F B, HUANG M, et al. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway[J]. Hepatobiliary Pancreat Dis Int, 2019, 18(6): 580-586. doi: 10.1016/j.hbpd.2019.03.003
    [10] HUANG H W, CHANG C C, WANG C S, et al. Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development[J]. Cells, 2021, 10(1): 67. DOI: 10.3390/cells10010067.
    [11] CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490. doi: 10.1038/s41580-020-0243-y
    [12] SHANG A Q, GU C Z, WANG W W, et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis[J]. Mol Cancer, 2020, 19(1): 117. doi: 10.1186/s12943-020-01235-0
    [13] WONG C H, LOU U K, LI Y, et al. CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging MiR-942[J]. Cancer Res, 2020, 80(11): 2138-2149. doi: 10.1158/0008-5472.CAN-19-3268
    [14] LI X, LIU C X X, XUE W, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection[J]. Mol Cell, 2017, 67(2): 214-227. e7. doi: 10.1016/j.molcel.2017.05.023
    [15] ZHANG M L, HUANG N N, YANG X S, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis[J]. Oncogene, 2018, 37(13): 1805-1814. doi: 10.1038/s41388-017-0019-9
    [16] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
    [17] WU G J, ZHOU W H, PAN X H, et al. Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer[J]. Mol Ther Nucleic Acids, 2020, 19: 1134-1144. doi: 10.1016/j.omtn.2019.12.025
    [18] ZHANG W, LIU T, LI T S, et al. Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR-488-3p/HAS2 axis[J]. Cancer Gene Ther, 2021, 28(3-4): 279-293. doi: 10.1038/s41417-020-00218-z
    [19] TAMMI M I, OIKARI S, PASONEN-SEPPÄNEN S, et al. Activated hyaluronan metabolism in the tumor matrix - causes and consequences[J]. Matrix Biol, 2019, 78-79: 147-164. doi: 10.1016/j.matbio.2018.04.012
    [20] KIM Y H, LEE S B, SHIM S, et al. Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling[J]. Cancer Sci, 2019, 110(7): 2226-2236. doi: 10.1111/cas.14070
    [21] KOLLIOPOULOS C, LIN C Y, HELDIN C H, et al. Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer[J]. Matrix Biol, 2019, 80: 29-45. doi: 10.1016/j.matbio.2018.09.002
    [22] Yang Y, Zhang Y, Ding X, et al. Construction and analysis of the ceRNA network hsa_circ_0031968/miR-3611/GCG in lung adenocarcinoma[J]. Ann Transl Med, 2021, 9(24): 1757. doi: 10.21037/atm-21-5854
    [23] D'ADAMO M C, LIANTONIO A, ROLLAND J F, et al. Kv1.1 channelopathies: pathophysiological mechanisms and therapeutic approaches[J]. Int J Mol Sci, 2020, 21(8): 2935. doi: 10.3390/ijms21082935
    [24] UHAN S, ZIDAR N, TOMAŽIĈ A, et al. Hypermethylated promoters of genes UNC5D and KCNA1 as potential novel diagnostic biomarkers in colorectal cancer[J]. Epigenomics, 2020, 12(19): 1677-1688. doi: 10.2217/epi-2020-0118
    [25] YANG J A, YANG Q. Identification of core genes and screening of potential targets in glioblastoma multiforme by integrated bioinformatic analysis[J]. Front Oncol, 2020, 10: 615976. DOI: 10.3389/fonc.2020.615976.
    [26] LIU L, CHEN Y M, ZHANG Q Y, et al. Silencing of KCNA1 suppresses the cervical cancer development via mitochondria damage[J]. Channels (Austin), 2019, 13(1): 321-330. doi: 10.1080/19336950.2019.1648627
    [27] YU Q, WANG X J, YANG Y H, et al. Upregulated NLGN1 predicts poor survival in colorectal cancer[J]. BMC Cancer, 2021, 21(1): 884. doi: 10.1186/s12885-021-08621-x
    [28] BIZZOZERO L, PERGOLIZZI M, PASCAL D, et al. Tumoral neuroligin 1 promotes cancer-nerve interactions and synergizes with the glial cell line-derived neurotrophic factor[J]. Cells, 2022, 11(2): 280. DOI: 10.3390/cells11020280.
  • 加载中
图(3)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  49
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-05-31

目录

    /

    返回文章
    返回