留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

急性冠脉综合征患者HIGD-1A及HIGD-1B蛋白水平及意义

曾超超 胡擎天 王月祥 耿志军 胡司淦 刘进军 李妙男

曾超超, 胡擎天, 王月祥, 耿志军, 胡司淦, 刘进军, 李妙男. 急性冠脉综合征患者HIGD-1A及HIGD-1B蛋白水平及意义[J]. 中华全科医学, 2023, 21(3): 381-384. doi: 10.16766/j.cnki.issn.1674-4152.002888
引用本文: 曾超超, 胡擎天, 王月祥, 耿志军, 胡司淦, 刘进军, 李妙男. 急性冠脉综合征患者HIGD-1A及HIGD-1B蛋白水平及意义[J]. 中华全科医学, 2023, 21(3): 381-384. doi: 10.16766/j.cnki.issn.1674-4152.002888
ZENG Chaochao, HU Qingtian, WANG Yuexiang, GENG Zhijun, HU Sigan, LIU Jinjun, LI Miaonan. The level and significance of HIGD-1A and HIGD-1B protein in patients with acute coronary syndrome[J]. Chinese Journal of General Practice, 2023, 21(3): 381-384. doi: 10.16766/j.cnki.issn.1674-4152.002888
Citation: ZENG Chaochao, HU Qingtian, WANG Yuexiang, GENG Zhijun, HU Sigan, LIU Jinjun, LI Miaonan. The level and significance of HIGD-1A and HIGD-1B protein in patients with acute coronary syndrome[J]. Chinese Journal of General Practice, 2023, 21(3): 381-384. doi: 10.16766/j.cnki.issn.1674-4152.002888

急性冠脉综合征患者HIGD-1A及HIGD-1B蛋白水平及意义

doi: 10.16766/j.cnki.issn.1674-4152.002888
基金项目: 

安徽高校自然科学研究项目 KJ2021A0818

安徽高校自然科学研究项目 KJ2018A0219

详细信息
    通讯作者:

    刘进军,E-mail:Ljj19740828101@163.com

  • 中图分类号: R543.3

The level and significance of HIGD-1A and HIGD-1B protein in patients with acute coronary syndrome

  • 摘要:   目的  通过检测急性冠脉综合征(ACS)患者血清缺氧诱导基因结构域蛋白-1A(HIGD-1A)、缺氧诱导基因结构域蛋白-1B(HIGD-1B)蛋白水平,分析其与急性冠脉综合征发生发展的关系。  方法  选择2019年9月—2021年9月就诊于蚌埠医学院第一附属医院心血管内科经冠状动脉造影确诊为ACS的患者106例,包括急性心肌梗死(AMI)患者50例、不稳定型心绞痛(UAP)患者56例,稳定型心绞痛(SAP)患者20例,选取同时期冠脉造影未见异常的患者34例作为正常组,采用ELISA法检测HIGD-1A、HIGD-1B蛋白,评估各组间差异。  结果  ACS组血清HIGD-1B蛋白与正常组比较差异有统计学意义(P<0.001)。ACS组、SAP组、正常组血清HIGD-1A蛋白差异无统计学意义(P=0.123)。根据Gensini积分,将冠脉病变程度分为轻度病变组29例,中度病变组40例,重度病变组37例,不同病变程度ACS患者HIGD-1B水平差异有统计学意义(P<0.001)。经Pearson相关性分析,ACS患者HIGD-1B水平与Gensini积分成正相关关系(r=0.685,P<0.001)。绘制ROC曲线,血清HIGD-1B水平预测急性冠脉综合征的AUC为0.940,灵敏度为84.0%,特异度为94.1%,约登指数为0.781,具有一定的诊断参考价值。  结论  急性冠脉综合征患者血清HIGD-1B蛋白显著升高,且与冠脉严重程度成正相关关系,这对于ACS的诊断具有重要意义。

     

  • 图  1  血清HIGD-1B预测ACS、AMI的ROC曲线

    注:A为预测ACS的ROC曲线;B为预测AMI的ROC曲线。

    Figure  1.  ROC curve of serum HIGD-1B for predicting ACS and AMI

    表  1  3组受试者的基线资料比较

    Table  1.   Comparison of baseline data among the three groups of subjects

    组别 例数 性别
    (男/女,例)
    吸烟
    (有/无,例)
    年龄
    (x±s,岁)
    空腹血糖
    (x±s,mmol/L)
    甘油三酯
    (x±s,mmol/L)
    尿酸
    (x±s,μmol/L)
    肌酐
    (x±s,μmol/L)
    ACS组 106 66/40 56/50 63.91±11.12 6.42±2.78 1.82±0.81 313.30±73.07 69.26±12.72
    SAP组 20 14/6 12/8 61.90±10.26 5.52±1.06 1.89±0.83 335.45±82.07 67.50±10.85
    正常组 34 22/12 18/16 59.00±9.97 5.94±3.28 1.88±1.31 298.00±67.52 68.35±8.49
    统计量 0.453a 0.359a 2.714b 1.090b 0.096b 1.659b 0.229b
    P 0.797 0.836 0.069 0.339 0.909 0.194 0.796
    注:a为χ2值,bF值。
    下载: 导出CSV

    表  2  Gensini积分算法

    Table  2.   Gensini integral algorithm

    病变血管位置 系数 病变狭窄程度比例 得分
    左主干 5.0 未见异常 0
    左前降支近段 2.5 ≤25%
    左前降支中段 1.5 1
    左前降支远段 1.0
    左回旋支近段 2.5 26%~50% 2
    左回旋支远段 1.0
    后侧支 0.5 51%~75% 4
    第一对角支 1.0 76%~90%
    第二对角支 0.5 8
    右冠近段 1.0 91%~99%
    右冠中段 1.0 16
    右冠远段 1.0
    后降支 1.0 100% 32
    下载: 导出CSV

    表  3  ACS组、SAP组、正常组血清HIGD-1A、HIGD-1B比较(x±s,ng/mL)

    Table  3.   Comparison of serum HIGD-1A and HIGD-1B among ACS group, SAP group and normal group(x±s, ng/mL)

    组别 例数 HIGD-1A HIGD-1B
    ACS组 106 2.67±0.90 4.46±1.76ab
    SAP组 20 2.26±0.63 2.51±0.82
    正常组 34 2.53±0.78 1.67±0.84
    F 2.125 78.041
    P 0.123 <0.001
    注:与正常组比较,aP < 0.05;与SAP组比较, bP < 0.05。
    下载: 导出CSV

    表  4  不同病变程度ACS患者血清HIGD-1B水平比较(x±s,ng/mL)

    Table  4.   Comparison of serum HIGD-1B levels in ACS patients with different degrees of lesion(x±s, ng/mL)

    组别 例数 HIGD-1B
    轻度病变组 29 3.02±1.22
    中度病变组 40 3.96±0.91a
    重度病变组 37 6.12±1.48ab
    F 45.501
    P <0.001
    注:与轻度病变组比较,aP < 0.05;与中度病变组比较,bP < 0.05。
    下载: 导出CSV

    表  5  血清HIGD-1B对ACS、AMI的预测价值

    Table  5.   Predictive value of serum HIGD-1B for ACS and AMI

    组别 AUC 95% CI SE P 截断值
    (ng/mL)
    灵敏度
    (%)
    特异度
    (%)
    约登指数
    ACS组 0.940 0.903~0.976 0.019 < 0.001 2.943 84.0 94.1 0.781
    AMI组 0.950 0.907~0.992 0.022 < 0.001 3.168 82.0 97.1 0.791
    下载: 导出CSV
  • [1] TRUTTER L, BIGEH A, PECCI C, et al. Diagnostic and management dilemmas in women presenting with acute coronary syndromes[J]. Curr Cardiol Rep, 2020, 22(12): 163. doi: 10.1007/s11886-020-01410-1
    [2] BHATT D L, LOPES R D, HARRINGTON R A. Diagnosis and treatment of acute coronary syndromes: a review[J]. JAMA, 2022, 327(7): 662-675. doi: 10.1001/jama.2022.0358
    [3] DONG Y, CHEN H, GAO J, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease[J]. J Mol Cell Cardiol, 2019, 136: 27-41. doi: 10.1016/j.yjmcc.2019.09.001
    [4] 王娟, 范西真, 吴晓飞. 急性冠脉综合征的诊治与管理[J]. 中华全科医学, 2021, 19(7): 1073-1074. http://www.zhqkyx.net/article/id/aa90c0ac-e729-4f80-9cfa-d82edb47ae2e

    WANG J, FAN X Z, WU X F. Diagnosis, treatment and management of acute coronary syndrome[J]. Chinese Journal of General Practice, 2021, 19(7): 1073-1074. http://www.zhqkyx.net/article/id/aa90c0ac-e729-4f80-9cfa-d82edb47ae2e
    [5] LI T, XIAN W J, GAO Y, et al. Higd-1a protects cells from lipotoxicity under high-fat exposure[J]. Oxid Med Cell Longev, 2019, 2019: 6051262. DOI: 10.1155/2019/6051262.
    [6] TIMON-GOMEZ A, BARTLEY-DIER E L, FONTANESI F, et al. Higd-driven regulation of cytochrome c oxidase biogenesis and function[J]. Cells, 2020, 9(12): 2620. doi: 10.3390/cells9122620
    [7] XU Z, SUN J, MAO Y, et al. Hig1 domain family member 1A disrupts proliferation, migration, and invasion of colon adenocarcinoma cells[J]. Bioengineered, 2021, 12(2): 10501-10511. doi: 10.1080/21655979.2021.1999368
    [8] TIMON-GOMEZ A, GARLICH J, STUART R A, et al. Distinct roles of mitochondrial higd-1A and higd-2A in respiratory complex and supercomplex biogenesis[J]. Cell Rep, 2020, 31(5): 107607. DOI: 10.1016/j.celrep.2020.107607.
    [9] GUO J, YANG C, ZHANG S, et al. Mir-375 induces ros and apoptosis in ST cells by targeting the higd-1A gene[J]. Gene, 2019, 685: 136-142. doi: 10.1016/j.gene.2018.10.086
    [10] CHENG Z, WANG G, ZHU W, et al. LEF1-AS1 accelerates tumorigenesis in glioma by sponging mir-489-3p to enhance higd1A[J]. Cell Death Dis, 2020, 11(8): 690. doi: 10.1038/s41419-020-02823-0
    [11] NAGAO T, SHINTANI Y, HAYASHI T, et al. Higd1a improves respiratory function in the models of mitochondrial disorder[J]. FASEB J, 2020, 34(1): 1859-1871. doi: 10.1096/fj.201800389R
    [12] ZHU J Y, CHEN M, MU W J, et al. Higd1a facilitates exercise-mediated alleviation of fatty liver in diet-induced obese mice[J]. Metabolism, 2022, 134: 155241. DOI: 10.1016/j.metabol.2022.155241.
    [13] LOPEZ L, ZULUAGA M J, LAGOS P, et al. The expression of hypoxia-induced gene 1(higd1a) in the central nervous system of male and female rats differs according to age[J]. J Mol Neurosci, 2018, 66(3): 462-473. doi: 10.1007/s12031-018-1195-y
    [14] CHEN B, XU F, GAO Y, et al. DNA damage-induced translocation of mitochondrial factor HIGD1A into the nucleus regulates homologous recombination and radio/chemo-sensitivity[J]. Oncogene, 2022, 41(13): 1918-1930. doi: 10.1038/s41388-022-02226-9
    [15] BAEK S H, MAIORINO E, KIM H, et al. Single cell transcriptomic analysis reveals organ specific pericyte markers and identities[J]. Front Cardiovasc Med, 2022, 9: 876591. DOI: 10.3389/fcvm.2022.876591.
    [16] ZHOU Y, XU B, ZHOU Y, et al. Identification of key genes with differential correlations in lung adenocarcinoma[J]. Front Cell Dev Biol, 2021, 9: 675438. DOI: 10.3389/fcell.2021.675438.
    [17] SORIANO M E, SCORRANO L. The interplay between Bcl-2 family proteins and mitochondrial morphology in the regulation of apoptosis[J]. Adv Exp Med Biol, 2010, 687: 97-114.
    [18] LIU Y L, YANG L Q, YIN J M, et al. MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating Bcl-2 and MAPK3[J]. J Investig Med, 2018, 66(1): 39-45. doi: 10.1136/jim-2017-000485
    [19] PANG Y, ZHU Z D, WEN Z H, et al. Higd 1b inhibits hypoxia induced mitochondrial fragmentation by regulating OPA1 cleavage in cardiomyocytes[J]. Mol Med Rep, 2021, 24(2): 549. DOI: 10.3892/mmr.2021.12188.
    [20] CAO M Y, YU C, YAO Z H, et al. Atractylodesin Ⅲ maintains mitochondrial function and inhibits caspase-3 activity to reverse apoptosis of cardiomyocytes in AMI rats[J]. Int J Clin Exp Pathol, 2019, 12(1): 198-204.
    [21] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T D. Caspases in cell death, inflammation, and pyroptosis[J]. Annu Rev Immunol, 2020, 38: 567-595. doi: 10.1146/annurev-immunol-073119-095439
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  63
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2023-04-19

目录

    /

    返回文章
    返回