留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肿瘤免疫治疗中超进展现象的研究及进展

邢嵘雪 崔童 田应选

邢嵘雪, 崔童, 田应选. 肿瘤免疫治疗中超进展现象的研究及进展[J]. 中华全科医学, 2023, 21(2): 304-308. doi: 10.16766/j.cnki.issn.1674-4152.002869
引用本文: 邢嵘雪, 崔童, 田应选. 肿瘤免疫治疗中超进展现象的研究及进展[J]. 中华全科医学, 2023, 21(2): 304-308. doi: 10.16766/j.cnki.issn.1674-4152.002869
XING Rong-xue, CUI Tong, TIAN Ying-xuan. Research and progress of hyperprogression after immunotherapy[J]. Chinese Journal of General Practice, 2023, 21(2): 304-308. doi: 10.16766/j.cnki.issn.1674-4152.002869
Citation: XING Rong-xue, CUI Tong, TIAN Ying-xuan. Research and progress of hyperprogression after immunotherapy[J]. Chinese Journal of General Practice, 2023, 21(2): 304-308. doi: 10.16766/j.cnki.issn.1674-4152.002869

肿瘤免疫治疗中超进展现象的研究及进展

doi: 10.16766/j.cnki.issn.1674-4152.002869
基金项目: 

陕西省人民医院拔尖人才支持计划项目 2021BJ-22

详细信息
    通讯作者:

    田应选,E-mail:tian-tyx@163.com

  • 中图分类号: R730.51

Research and progress of hyperprogression after immunotherapy

  • 摘要: 现代免疫治疗作为癌症治疗的新里程碑,为许多缺乏有效治疗方法的肿瘤治疗带来了颠覆性的变革。在过去十年中,由于对分子水平适应性免疫的认识和理解,促进了免疫检查点抑制剂药物的开发。以帕博利珠单抗、纳武利尤单抗为代表的免疫检查点抑制剂是一种全新的治疗模式,不同于传统的化疗或分子水平精准治疗的靶向治疗,其通过对自体免疫细胞及肿瘤免疫微环境的调节作用促使自体免疫细胞发挥强大的抗肿瘤作用,在众多临床试验和真实世界研究中都展现出了不俗的表现,明显的生存获益、更低的治疗不良反应发生率、接受治疗患者生存质量改善,使其成为众多晚期实体瘤治疗中的一颗新星,为多种类型的实体瘤治疗带来了新希望,是众多晚期肿瘤患者的新福音。但随着其使用的普及,有临床医师发现部分患者在免疫治疗中非但没有显著的生存获益,反而出现了短时间内肿瘤快速进展,甚至迅速死亡的情况,这一现象被称为免疫治疗超进展。目前,关于超进展现象出现的机制和临床应对策略的研究相当有限。本文拟从定义、临床特征、发生机制、鉴别诊断及患者管理这几个方面进行综述,以期使临床医师在治疗中尽早识别超进展现象,及时采取措施,改善晚期肿瘤患者预后,带来生存获益。

     

  • [1] CHAMPIAT S, DERCLE L, AMMARI S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by Anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017, 23(8): 1920-1928. doi: 10.1158/1078-0432.CCR-16-1741
    [2] CHUBACHI S, YASUDA H, IRIE H, et al. A case of non-small cell lung cancer with possible "disease flare" on nivolumab treatment[J]. Case Rep Oncol Med, 2016, 2016: 1075641. DOI: 10.1155/2016/1075641.
    [3] CAMELLITI S, LENOCI V, BIANCHI F, et al. Mechanisms of hyperprogressive disease after immune checkpoint inhibitor therapy: What we (don' t) know[J]. J Exp Clin Cancer Res, 2020, 39(1): 236. doi: 10.1186/s13046-020-01721-9
    [4] FERTÉ C, FERNANDEZ M, HOLLEBECQUE A, et al. Tumor growth rate is an early indicator of antitumor drug activity in phase Ⅰ clinical trials[J]. Clin Cancer Res, 2014, 20(1): 246-252. FERTÉ C, FERNANDEZ M, HOLLEBECQUE A, et al. Tumor growth rate is an early indicator of antitumor drug activity in phase Ⅰ clinical trials[J]. Clin Cancer Res, 2014, 20(1): 246-252. doi: 10.1158/1078-0432.CCR-13-2098
    [5] FERRARA R, MEZQUITA L, TEXIER M, et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018, 4(11): 1543-1552. doi: 10.1001/jamaoncol.2018.3676
    [6] SAÃDA-BOUZID E, DEFAUCHEUX C, KARABAJAKIAN A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017, 28(7): 1605-1611. doi: 10.1093/annonc/mdx178
    [7] CHAMPIAT S, FERRARA R, MASSARD C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018, 15(12): 748-762. doi: 10.1038/s41571-018-0111-2
    [8] KATO S, GOODMAN A, WALAVALKAR V, et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate[J]. Clin Cancer Res, 2017, 23(15): 4242-4250. doi: 10.1158/1078-0432.CCR-16-3133
    [9] ZHANG H C, FANG X F, LI D, et al. Hyperprogressive disease in patients receiving immune checkpoint inhibitors[J]. Curr Probl Cancer, 2021, 45(3): 100688. DOI: 10.1016/j.currproblcancer.2020.100688.
    [10] KIM C G, KIM K H, PYO K H, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer[J]. Ann Oncol, 2019, 30(7): 1104-1113. doi: 10.1093/annonc/mdz123
    [11] SOLAYMANI-MOHAMMADI S, LAKHDARI O, MINEV I, et al. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules[J]. J Leukoc Biol, 2016, 99(3): 475-482. doi: 10.1189/jlb.4A0115-003RR
    [12] LAMICHHANE P, KARYAMPUDI L, SHREEDER B, et al. IL10 release upon PD-1 blockade sustains immunosuppression in ovarian cancer[J]. Cancer Res, 2017, 77(23): 6667-6678. doi: 10.1158/0008-5472.CAN-17-0740
    [13] KARYAMPUDI L, LAMICHHANE P, KREMPSKI J, et al. PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-κB[J]. Cancer Res, 2016, 76(2): 239-250. doi: 10.1158/0008-5472.CAN-15-0748
    [14] KREMPSKI J, KARYAMPUDI L, BEHRENS M D, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer[J]. J Immunol, 2011, 186(12): 6905-6913. doi: 10.4049/jimmunol.1100274
    [15] XIA Q, WEI L, ZHANG Y T, et al. Immune checkpoint receptors Tim-3 and PD-1 regulate monocyte and T lymphocyte function in septic patients[J]. Mediators Inflamm, 2018, 2018: 1632902. DOI: 10.1155/2018/1632902.
    [16] SAID E A, DUPUY F P, TRAUTMANN L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection[J]. Nat Med, 2010, 16(4): 452-459. doi: 10.1038/nm.2106
    [17] GALLI S J, BORREGAARD N, WYNN T A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils[J]. Nat Immunol, 2011, 12(11): 1035-1044. doi: 10.1038/ni.2109
    [18] HUANG R Y, FRANCOIS A, MCGRAY A R, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer[J]. Oncoimmunology, 2016, 6(1): e1249561. DOI: 10.1080/2162402X.2016.1249561.
    [19] KAWAKAMI Y, OHTA S, SAYEM M A, et al. Immune-resistant mechanisms in cancer immunotherapy[J]. Int J Clin Oncol, 2020, 25(5): 810-817. doi: 10.1007/s10147-019-01611-x
    [20] SHI H B, LAN J, YANG J Q. Mechanisms of resistance to checkpoint blockade therapy[J]. Adv Exp Med Biol, 2020, 1248: 83-117.
    [21] KOYAMA S, AKBAY E A, LI Y Y, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment[J]. Cancer Res, 2016, 76(5): 999-1008. doi: 10.1158/0008-5472.CAN-15-1439
    [22] 郑冠群, 赵福友, 吴穷, 等. PD-1及其配体在骨肉瘤免疫治疗中的研究进展[J]. 中华全科医学, 2016, 14(9): 1560-1562. doi: 10.16766/j.cnki.issn.1674-4152.2016.09.042

    ZHENG G Q, ZHAO F Y, WU Q, et al. Research progress of PD-1 and its ligands in immunotherapy of osteosarcoma[J]. Chinese Journal of General Practice, 2016, 14(9): 1560-1562. doi: 10.16766/j.cnki.issn.1674-4152.2016.09.042
    [23] TOGASHI Y, SHITARA K, NISHIKAWA H. Regulatory T cells in cancer immunosuppression -implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16(6): 356-371. doi: 10.1038/s41571-019-0175-7
    [24] KAMADA T, TOGASHI Y, TAY C, et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(20): 9999-10008. doi: 10.1073/pnas.1822001116
    [25] ZAPPASODI R, BUDHU S, HELLMANN M D, et al. Non-conventional inhibitory CD4+Foxp3-PD-1hi T cells as a biomarker of immune checkpoint blockade activity[J]. Cancer Cell, 2018, 33(6): 1017-1032. doi: 10.1016/j.ccell.2018.05.009
    [26] ANGELICOLA S, RUZZI F, LANDUZZI L, et al. IFN-gamma and CD38 in hyperprogressive cancer development[J]. Cancers(Basel), 2021, 13(2): 309.
    [27] MANGUSO R T, POPE H W, ZIMMER M D, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target[J]. Nature, 2017, 547(7664): 413-418. doi: 10.1038/nature23270
    [28] ZARETSKY J M, GARCIA-DIAZ A, SHIN D S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma[J]. N Engl J Med, 2016, 375(9): 819-829. doi: 10.1056/NEJMoa1604958
    [29] KALBASI A, RIBAS A. Tumour-intrinsic resistance to immune checkpoint blockade[J]. Nat Rev Immunol, 2020, 20(1): 25-39. doi: 10.1038/s41577-019-0218-4
    [30] MALAVASI F, DEAGLIO S, FUNARO A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology[J]. Physiol Rev, 2008, 88(3): 841-886. doi: 10.1152/physrev.00035.2007
    [31] HOGAN K A, CHINI C, CHINI E N. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases[J]. Front Immunol, 2019, 10: 1187. doi: 10.3389/fimmu.2019.01187
    [32] GALLDIKS N, KOCHER M, LANGEN K J. Pseudoprogression after glioma therapy: an update[J]. Expert Rev Neurother, 2017, 17(11): 1109-1115. doi: 10.1080/14737175.2017.1375405
    [33] WOLCHOK J D, SAENGER Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation[J]. Oncologist, 2008, 13: 2-9. doi: 10.1634/theoncologist.13-S4-2
    [34] CHIOU V L, BUROTTO M. Pseudoprogression and immune-related response in solid tumors[J]. J Clin Oncol, 2015, 33(31): 3541-3543. doi: 10.1200/JCO.2015.61.6870
    [35] WANG Q H, GAO J Z, WU X. Pseudoprogression and hyperprogression after checkpoint blockade[J]. Int Immunopharmacol, 2018, 58: 125-135. doi: 10.1016/j.intimp.2018.03.018
    [36] FRELAUT M, DU RUSQUEC P, DE MOURA A, et al. Pseudoprogression and hyperprogression as new forms of response to immunotherapy[J]. BioDrugs, 2020, 34(4): 463-476. doi: 10.1007/s40259-020-00425-y
    [37] CHAE Y K, WANG S, NIMEIRI H, et al. Pseudoprogression in microsatellite instability-high colorectal cancer during treatment with combination T cell mediated immunotherapy: a case report and literature review[J]. Oncotarget, 2017, 8(34): 57889-57897. doi: 10.18632/oncotarget.18361
    [38] TANIZAKI J, HAYASHI H, KIMURA M, et al. Report of two cases of pseudoprogression in patients with non-small cell lung cancer treated with nivolumab-including histological analysis of one case after tumor regression[J]. Lung Cancer, 2016, 102: 44-48. doi: 10.1016/j.lungcan.2016.10.014
    [39] 中华医学会核医学分会PET学组. 免疫检查点抑制剂治疗恶性肿瘤的PET/CT评价专家共识(2020版)[J]. 中华肿瘤杂志, 2020, 42(9): 697-705. doi: 10.3760/cma.j.cn112152-20200623-00590

    PET Group of Nuclear Medicine Society of Chinese Medical Association. Expert consensus on assessing tumor response to immune checkpoint inhibitors by PET/CT (2020 Edition)[J]. Chinese Journal of Oncology, 2020, 42(9): 697-705. doi: 10.3760/cma.j.cn112152-20200623-00590
    [40] AIDE N, HICKS R J, LE TOURNEAU C, et al. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature[J]. Eur J Nucl Med Mol Imaging, 2019, 46(1): 238-250. doi: 10.1007/s00259-018-4171-4
    [41] WEISS G J, BECK J, BRAUN D P, et al. Tumor Cell-Free DNA copy number instability predicts therapeutic response to immunotherapy[J]. Clin Cancer Res, 2017, 23(17): 5074-5081. doi: 10.1158/1078-0432.CCR-17-0231
  • 加载中
计量
  • 文章访问数:  189
  • HTML全文浏览量:  41
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回