留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

添加不同量丝胶粉对义齿基托树脂表面亲水性及力学特性的影响

迪丽努尔·买买提沙吾提 米热扎提·泰来提 周琦琪 何惠宇

迪丽努尔·买买提沙吾提, 米热扎提·泰来提, 周琦琪, 何惠宇. 添加不同量丝胶粉对义齿基托树脂表面亲水性及力学特性的影响[J]. 中华全科医学, 2023, 21(2): 213-216. doi: 10.16766/j.cnki.issn.1674-4152.002848
引用本文: 迪丽努尔·买买提沙吾提, 米热扎提·泰来提, 周琦琪, 何惠宇. 添加不同量丝胶粉对义齿基托树脂表面亲水性及力学特性的影响[J]. 中华全科医学, 2023, 21(2): 213-216. doi: 10.16766/j.cnki.issn.1674-4152.002848
DILINUER·Maimaitishawuti, MIREZHATI·Tailaiti, ZHOU Qi-qi, HE Hui-yu. Effect of adding different amounts of sericin powder on the surface hydrophilicity and mechanical properties of denture base[J]. Chinese Journal of General Practice, 2023, 21(2): 213-216. doi: 10.16766/j.cnki.issn.1674-4152.002848
Citation: DILINUER·Maimaitishawuti, MIREZHATI·Tailaiti, ZHOU Qi-qi, HE Hui-yu. Effect of adding different amounts of sericin powder on the surface hydrophilicity and mechanical properties of denture base[J]. Chinese Journal of General Practice, 2023, 21(2): 213-216. doi: 10.16766/j.cnki.issn.1674-4152.002848

添加不同量丝胶粉对义齿基托树脂表面亲水性及力学特性的影响

doi: 10.16766/j.cnki.issn.1674-4152.002848
基金项目: 

新疆维吾尔自治区科学技术厅自然科学基金青年项目 2017D01C338

详细信息
    通讯作者:

    何惠宇,E-mail:Hehuiyu01@126.com

  • 中图分类号: R783

Effect of adding different amounts of sericin powder on the surface hydrophilicity and mechanical properties of denture base

  • 摘要:   目的  义齿基托材料的亲水性和力学特性都会对义齿基托的修复效果造成影响,本次主要研究添加不同量丝胶粉对义齿基托树脂表面亲水性及力学特性的影响。  方法  将不同粉末和单体组成4种组合,A组:D-300-甲基丙烯酸甲酯(MMA); B组:D-250ML-甲基丙烯酸异丁酯(iBMA); C组:D-100M-甲基丙烯酸异辛酯(EHMA)+甲基丙烯酸2-羟基乙酯(HEMA); D组:D-250E-EHMA+MMA。各组添加不同量丝胶粉(0%、1%、3%、5%)得到16种材料。测定材料浸泡0、60、120、240、300、360 d的表面接触角,计算抗折性能、弹性模量。  结果  (1) 各组不同丝胶粉添加量样本的接触角、抗折强度、弹性模量的差异有统计学意义(均P < 0.05)。(2)各组无添加样本接触角高于添加3%丝胶粉样本(均P < 0.05)。各组添加3%丝胶粉样本浸泡180~360 d时间段的接触角呈降低趋势。C组浸泡360 d、添加3%丝胶粉样本的接触角最低(58.31±5.42)°。(3)未添加丝胶粉样本中,A组抗折强度高于其他3组(均P < 0.05)。A组和D组中添加3%丝胶粉样本浸泡360 d的抗折强度较高,为(122.31±9.73)MPa和(117.47±8.99)MPa。(4)B组中添加1%、3%、5%丝胶粉样本的弹性模量高于无添加样本(均P < 0.05)。A组添加5%丝胶粉、B组添加1%丝胶粉和D组添加3%丝胶粉样本的弹性模量较高。  结论  添加不同量丝胶粉可增加义齿基托表面的亲水性,但抗折强度及弹性模量也会受到一定影响。

     

  • 图  1  各组材料浸泡不同时间的接触角变化

    Figure  1.  The change of contact angle in each group of materials soaked for different time

    图  2  各组材料浸泡不同时间的抗折强度

    Figure  2.  The bending strength of each group of materials soaked for different time

    图  3  各组材料浸泡不同时间的弹性模量

    Figure  3.  The elastic modulus of each group of materials soaked for different time

    表  1  材料混合组别

    Table  1.   Groups of material mix

    组别 粉末 单体
    A组 D-300 99,98,96,94 wt%+BPO 1wt%+丝胶粉0, 1, 3, 5 wt% MMA 100 wt%
    B组 D-250ML 99, 98, 96, 94 wt%+BPO 1wt%+丝胶粉0, 1, 3, 5 wt% iBMA 100 wt%
    C组 D-100M 99, 98, 96, 94 wt%+BPO 1wt%+丝胶粉0, 1, 3, 5 wt% EHMA 50 wt%+HEMA 50 wt%
    D组 D-250E 99, 98, 96, 94 wt%+BPO 1wt%+丝胶粉0, 1, 3, 5 wt% EHMA 50 wt%+MMA50 wt%
    下载: 导出CSV

    表  2  各组材料浸泡前的接触角(x±s,°)

    Table  2.   Contact Angle of each group of materials before immersion (x±s)

    组别 例数 丝胶粉比例
    0% 1% 3% 5%
    A组 5 91.12±6.23 84.55±5.46 76.10±4.09a 82.84±5.00
    B组 5 81.71±5.39 78.38±4.11 74.09±4.33a 76.62±4.71
    C组 5 85.27±5.58 75.31±4.28 68.25±4.02a 77.51±5.07
    D组 5 93.53±6.53 85.34±5.88 77.62±4.05a 84.51±5.12
    F 4.051 4.728 4.986 3.478
    P 0.026 0.015 0.012 0.041
    注:与0%丝胶粉比例比较,aP < 0.05。
    下载: 导出CSV

    表  3  各组材料浸泡前的抗折强度(x±s,MPa)

    Table  3.   Flexural strength of each group of materials before immersion (x±s), MPa

    组别 例数 丝胶粉比例
    0% 1% 3% 5%
    A组 5 105.22±8.69a 83.01±7.74b 102.78±8.17 84.11±8.33b
    B组 5 57.63±6.88a 89.31±7.23b 65.51±8.21ac 57.58±5.49ac
    C组 5 67.41±5.99a 69.70±6.51a 88.79±7.72ab 79.78±6.14b
    D组 5 67.98±5.65a 103.74±8.80abc 65.28±8.06ac 82.17±7.22b
    F 60.197 17.228 26.321 16.103
    P <0.001 <0.001 <0.001 <0.001
    注:与0%丝胶粉比例比较,bP < 0.05;与A组比较,aP < 0.05;与C组比较,cP < 0.05。
    下载: 导出CSV

    表  4  各组材料浸泡前的弹性模量(x±s,MPa)

    Table  4.   Elastic modulus of each group of materials before immersion (x±s, MPa)

    组别 例数 丝胶粉比例
    0% 1% 3% 5%
    A组 5 3 369.89±328.69 3 017.53±316.84a 4 284.44±431.16a 3 369.89±320.41a
    B组 5 2 573.79±205.72b 5 338.01±446.36ab 5 335.63±429.73ab 3 961.92±323.45ab
    C组 5 2 989.35±227.39b 4 308.57±428.98ab 3 267.42±345.45ab 3 266.95±337.78a
    D组 5 1 797.34±225.23b 2 928.18±247.88a 1 796.84±239.66b 2 353.15±224.84ab
    F 35.918 48.407 83.101 133.078
    P <0.001 <0.001 <0.001 <0.001
    注:与0%丝胶粉比例比较,aP < 0.05;与A组比较,bP < 0.05。
    下载: 导出CSV
  • [1] AN S, EVANS J L, HAMLET S, et al. Incorporation of antimicrobial agents in denture base resin: a systematic review[J]. J Prosthet Dent, 2021, 126(2): 188-195. doi: 10.1016/j.prosdent.2020.03.033
    [2] TASHIRO S, KAWAGUCHI T, HAMANAKA I, et al. Bond strength of artificial teeth to thermoplastic denture base resin for injection molding[J]. Dent Mater J, 2021, 40(3): 657-663. doi: 10.4012/dmj.2020-183
    [3] DEB S, MUNISWAMY L, THOTA G, et al. Impact of surface treatment with different repair acrylic resin on the flexural strength of denture base resin: an in vitro study[J]. J Contemp Dent Pract, 2020, 21(10): 1137-1140.
    [4] BAJUNAID S O, BARAS B H, BALHADDAD A A, et al. Antibiofilm and protein-repellent polymethylmethacrylate denture base acrylic resin for treatment of denture stomatitis[J]. Materials (Basel), 2021, 14(5): 1067. doi: 10.3390/ma14051067
    [5] 章蕾, 刘毅, 李国民, 等. 树脂与高强纤维牙周夹板修复牙周炎合并牙缺失的效果对比[J]. 中华全科医学, 2021, 19(8): 1273-1276. doi: 10.16766/j.cnki.issn.1674-4152.002038

    ZHANG L, LIU Y, LI G M, et al. Comparison of the effect of resin and high-strength fiber periodontal splints in repairing periodontitis with loss of teeth[J]. Chinese Journal of General Practice, 2021, 19(8): 1273-1276. doi: 10.16766/j.cnki.issn.1674-4152.002038
    [6] BANGERA M K, KOTIAN R, RAVISHANKAR N. Effect of titanium dioxide nanoparticle reinforcement on flexural strength of denture base resin: a systematic review and meta-analysis[J]. Jpn Dent Sci Rev, 2020, 56(1): 68-76. doi: 10.1016/j.jdsr.2020.01.001
    [7] MAY L W, JOHN J, SEONG L G, et al. Comparison of cooling methods on denture base adaptation of rapid heat-cured acrylic using a three-dimensional superimposition technique[J]. J Indian Prosthodont Soc, 2021, 21(2): 198-203. doi: 10.4103/jips.jips_41_21
    [8] HSU C Y, YANG T C, WANG T M, et al. Effects of fabrication techniques on denture base adaptation: an in vitro study[J]. J Prosthet Dent, 2020, 124(6): 740-747. doi: 10.1016/j.prosdent.2020.02.012
    [9] ALQAHTATI M, HARALUR S B. Influence of different repair acrylic resin and thermocycling on the flexural strength of denture base resin[J]. Medicina (Kaunas), 2020, 56(2): 50. doi: 10.3390/medicina56020050
    [10] NAMALA B B, HEGDE V. Comparative evaluation of the effect of plant extract, thymus vulgaris and commercially available denture cleanser on the flexural strength and surface roughness of denture base resin[J]. J Indian Prosthodont Soc, 2019, 19(3): 261-265. doi: 10.4103/jips.jips_141_19
    [11] VOLETY S, SHETTY P P, KUMAR K, et al. Antifungal effects of herbal extracts and fluconazole on heat-polymerized acrylic denture base resin as denture cleanser: an in vitro study[J]. J Contemp Dent Pract, 2021, 22(2): 162-165. doi: 10.5005/jp-journals-10024-3042
    [12] ALQAHTANI M, HARALUR S B. Influence of different repair acrylic resin and thermocycling on the flexural strength of denture base resin[J]. Medicina (Kaunas), 2020, 56(2): 50. doi: 10.3390/medicina56020050
    [13] PACQUET W, BENOIT A, HATÈGE-KIMANA C, et al. Mechanical properties of CAD/CAM denture base resins[J]. Int J Prosthodont, 2019, 32(1): 104-106.
    [14] ALBASARAH S, ABDULGHANI H, ALASEEF N, et al. Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness[J]. J Adv Prosthodont, 2021, 13(4): 226-236. doi: 10.4047/jap.2021.13.4.226
    [15] HAYRAN Y, KESKIN Y. Flexural strength of polymethyl methacrylate copolymers as a denture base resin[J]. Dent Mater J, 2019, 38(4): 678-686. doi: 10.4012/dmj.2018-393
    [16] GAD M M, ABUALSAUD R, FOUDA S M, et al. Effects of denture cleansers on the flexural strength of PMMA denture base resin modified with ZrO2 nanoparticles[J]. J Prosthodont, 2021, 30(3): 235-244. doi: 10.1111/jopr.13234
    [17] RANGANATHAN A, KARTHIGEYAN S, CHELLAPILLAI R, et al. Effect of novel cycloaliphatic comonomer on the flexural and impact strength of heat-cure denture base resin[J]. J Oral Sci, 2020, 63(1): 14-17.
    [18] VOLETY S, SHETTY P P, KUMAR K, et al. Antifungal effects of herbal extracts and fluconazole on heat-polymerized acrylic denture base resin as denture cleanser: an in vitro study[J]. J Contemp Dent Pract, 2021, 22(2): 162-165. doi: 10.5005/jp-journals-10024-3042
    [19] GIBREEL M, LASSILA L V J, NǍRHI T O, et al. Midline denture base strains of glass fiber-reinforced single implant-supported overdentures[J]. J Prosthet Dent, 2021, 126(3): 407-412. doi: 10.1016/j.prosdent.2020.05.018
    [20] NAMANGKALAKUL W, BENJAVONKULCHAI S, POCHANA T, et al. Activity of chitosan antifungal denture adhesive against common Candida species and Candida albicans adherence on denture base acrylic resin[J]. J Prosthet Dent, 2020, 123(1): 181-182.
    [21] NAKHAEI M, DASHTI H, BAGHBANI A, et al. Bond strength of locator housing attached to denture base resin secured with different retaining materials[J]. Dent Res J (Isfahan), 2020, 17(1): 34-39. doi: 10.4103/1735-3327.276233
    [22] HAGHI H R, SHIEHZADEH M, GHARECHAHI J, et al. Comparison of tensile bond strength of soft liners to an acrylic resin denture base with various curing methods and surface treatments[J]. Int J Prosthodont, 2020, 33(1): 56-62. doi: 10.11607/ijp.6272
    [23] TZENG J J, YANG T S, LEE W F, et al. Mechanical properties and biocompatibility of urethane acrylate-based 3D-Printed denture base resin[J]. Polymers (Basel), 2021, 13(5): 822. doi: 10.3390/polym13050822
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  40
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 网络出版日期:  2023-04-20

目录

    /

    返回文章
    返回