Multi-sequence MRI image data-based machine learning model in the diagnosis of benign and malignant parotid gland tumours
-
摘要:
目的 探究腮腺肿瘤良恶性的诊断中应用基于多序列MRI的影像组学模型的临床价值。 方法 选取2021年1月1日—2022年5月30日于台州市中心医院就诊经病理检查证实的腮腺肿瘤患者共97例,其中良性肿瘤64例,恶性肿瘤33例,提取患者的临床资料及MRI图像。通过ITK-SNAP软件分割感兴趣区域(ROI),使用3D-slicer软件的PyRadiomics插件在T1加权对比增强成像序列(T1Wce)、T2加权序列(T2WI)及基于弥散加权成像(DWI)序列构建的表观弥散系数(ADC)图像中提取120个影像特征,使用Lasso回归进行特征降维,最后使用筛选的影像特征构建支持向量机(SVM)模型。然后绘制ROC曲线,评估模型的诊断效能。 结果 2组患者年龄、性别差异无统计学意义。基于患者T1Wce、T2WI和ADC序列以及3个序列联合构建4个影像组学模型用于腮腺肿瘤良恶性诊断,AUC分别为T1Wce模型0.752,T2WI模型0.776,ADC模型0.810,T1Wce+T2WI+ADC联合模型0.897,三序列联合模型的AUC显著高于单个序列模型。 结论 基于MRI影像数据构建的影像组学模型能够有效用于辅助腮腺肿瘤的良恶性诊断,其中联合T1Wce、T2WI和ADC序列构建的模型具有最佳的诊断效能。 Abstract:Objective The clinical value of multi-sequence MRI image data-based radiomics in the diagnosed of benign and malignant parotid gland tumors. Methods A total of 97 patients with parotid gland tumours diagnosed by pathological examination in Taizhou Central Hospital from January 1, 2021 to May 30, 2022 were selected, including 64 benign tumours and 33 malignant tumours. Meantime, patients' clinical data and MRI images were extracted. ITK-SNAP was used to segment regions of interest. In addition, PyRadiomics plugin of 3D-Slicer was used to extract 120 image features from T1-weighted contrast enhancement images (T1Wce), T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) images that were constructed on the basis of diffusion-weighted imaging (DWI) sequence. Then, Lasso regression was used for the reduction of image features. Finally, a support vector machine model (SVM) was constructed using the selected image features. Then, the ROC curve was drawn to evaluate the diagnostic efficiency of each model. Results No significant differences in age and gender ratio was observed between the two groups. Four imaging models were constructed, including the models based on T1Wce, T2WI, ADC images and the combination of the three sequences. The AUC was as follows: T1Wce model 0.752, T2WI model 0.776, ADC model 0.810, T1Wce+T2WI+ADC model 0.897. The AUC of the three-sequence combination model was significantly higher than that of the single-sequence model. Conclusion The radiomics model based on MRI image data can be effectively used for assisting the diagnosis of benign and malignant parotid gland tumours. Moreover, the model based on the combination of T1Wce, T2WI and ADC images has the best diagnostic efficiency. -
表 1 各序列SVM模型ROC曲线分析结果
Table 1. The results of ROC curve analysis for SVM model of each sequence
模型 AUC 95% CI 灵敏度(%) 特异度(%) T1Wce 0.752a 0.654~0.834 48.48 1.00 T2WI 0.776a 0.680~0.854 75.76 71.81 ADC 0.810a 0.717~0.882 60.61 87.50 T1Wce+T2WI+ADC 0.897 0.819~0.950 81.82 93.75 注:与T1Wce+T2WI+ADC模型比较,aP < 0.05。 表 2 T1Wce+T2WI+ADC联合模型的影像学特征
Table 2. The imaging features of T1Wce+T2WI+ADC combined model
序列 特征 特征类别 T1Wce 球形不对称 3D形状特征 差分方差 GLCM特征 高灰度级运行强化 GLRLM特征 T2WI 低依赖强化 GLDM特征 熵依赖 GLDM特征 混杂 NGTDM特征 ADC 广域强化 GLSZM特征 区域大小不均匀 GLSZM特征 表面体积比 3D形状特征 高灰度级区域强化 GLSZM特征 -
[1] 江晓勇, 杨志辉, 陈希希, 等. 不同类型腮腺肿瘤的临床特点及远期复发情况分析[J]. 中华全科医学, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793JIANG X Y, YANG Z H, CHEN X X, et al. Clinical characteristics and long-term recurrence of different types of parotid gland tumors[J]. Chinese Journal of General Practice, 2019, 17(5): 790-792, 796. doi: 10.16766/j.cnki.issn.1674-4152.000793 [2] 唐晨虎, 马东, 孙伟, 等. CT和MRI在腮腺良、恶性肿瘤鉴别诊断中的价值[J]. 中国临床医学影像杂志, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htmTANG C H, MA D, SUN W, et al. Value of CT and MRI in differential diagnosis of benign and malignant parotid gland tumors[J]. Journal of China Clinic Medical Imaging, 2021, 32(2): 90-93, 103. https://www.cnki.com.cn/Article/CJFDTOTAL-LYYX202102007.htm [3] 张世坤, 王智明. 腮腺肿瘤诊断方法研究进展[J]. 中华实用诊断与治疗杂志, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htmZHANG S K, WANG Z M. Progress in the diagnosis of parotid gland tumors[J]. Chinese Journal of Practical Diagnosis and Therapy, 2018, 32(4): 411-413. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201804031.htm [4] 韩蕾, 邬小平. 磁共振成像技术在腮腺肿瘤诊断中的研究进展[J]. 磁共振成像, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htmHAN L, WU X P. Research progress of magnetic resonance imaging in the diagnosis of parotid gland tumors[J]. Magnetic Resonance Imaging, 2022, 13(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202202032.htm [5] 朱凌, 王灿, 杨功鑫, 等. 腮腺肿瘤性病变的影像学诊断思路及功能MRI价值评估[J]. 中华放射学杂志, 2022, 56(5): 587-590.ZHU L, WANG C, YANG G X, et al. Imaging diagnosis of parotid neoplastic lesions and evaluation of functional MRI value. [J]. Chinese Journal of Radiology, 2022, 56(5): 587-590. [6] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. [7] BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199. [8] LIBERINI V, LAUDICELLA R, BALMA M, et al. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics[J]. Eur Radiol Exp, 2022, 6(1): 27. [9] LI Q, JIANG T, ZHANG C, et al. A nomogram based on clinical information, conventional ultrasound and radiomics improves prediction of malignant parotid gland lesions[J]. Cancer Lett, 2022, 527: 107-114. [10] ZHENG Y M, XU W J, HAO D P, et al. A CT-based radiomics nomogram for differentiation of lympho-associated benign and malignant lesions of the parotid gland[J]. Eur Radiol, 2021, 31(5): 2886-2895. [11] PILUDU F, MARZI S, RAVANELLI M, et al. MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation[J]. Front Oncol, 2021, 11: 656918. DOI: 10.3389/fonc.2021.656918. [12] RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. N Engl J Med, 2019, 380(14): 1347-1358. [13] JUAN C J, HUANG T Y, LIU Y J, et al. Improving diagnosing performance for malignant parotid gland tumors using machine learning with multifeatures based on diffusion-weighted magnetic resonance imaging[J]. NMR Biomed, 2022, 35(3): e4642. DOI: 10.1002/nbm.4642. [14] YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. [15] VAN GRIETHUYSEN J, FEDOROV A, PARMAR C, et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77(21): e104-e107. [16] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. J Stat Softw, 2010, 33(1): 1-22. [17] 程顺达, 程颖, 孙士江. 基于机器学习的肿瘤智能辅助诊断方法[J]. 电子科技, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htmCHENG S D, CHENG Y, SUN S J. Intelligent auxiliary diagnosis of tumor based on machine learning[J]. Electronics Technology, 2022, 35(5): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK202205009.htm [18] 杜文, 彭歆. 人工智能技术在口腔颌面部肿瘤诊断中应用的研究进展[J]. 口腔疾病防治, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htmDU W, PENG Q. Research progress of artificial intelligence technology in the diagnosis of oral and maxillofacial tumors[J]. Prevention and Treatment of Oral Diseases, 2022, 30(5): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYB202205009.htm [19] 冯利, 岳小飞. 9种结合式机器学习算法在肿瘤早期诊断中的准确性比较研究[J]. 医学信息学杂志, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htmFENG L, YUE X F. Comparative study on the accuracy of 9 combined machine learning algorithms in early diagnosis of tumor[J]. Journal of Medical Informatics, 2022, 43(5): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQB202205008.htm -