Effects of tobacco exposure during pregnancy on pregnant women and foetuses based on placental gene expression profiling
-
摘要:
目的 扩展孕期烟草暴露对孕妇和胎儿造成影响的分子机制的认识。 方法 首先系统检索NCBI GEO和EBI ArrayExpress数据库,挑选符合条件的吸烟和不吸烟2组孕妇胎盘组织的基因表达谱数据集。然后整合并校正了数据集间的差异,采用差异表达、功能注释、富集分析、回归分析等多种生物信息方法和模型研究烟草暴露对孕妇和胎儿的影响。 结果 通过合并后的表达谱数据找到476条差异表达的基因(FDR < 0.5, |log2FC|>0.3),其中上调的基因317条,下调的基因159条。随后通过KEGG、GO以及Reactome、MSigDb对显著差异表达的基因进行功能注释和富集分析,发现这些基因主要出现在细胞外结构组织(P=1.10×10-28)、细胞外基质组织(P=3.44×10-25)以及间充质发育(P=2.60×10-13)等通路上。进一步针对烟草暴露标志物研究,采用回归分析发现CDCA7L基因在校正了母亲年龄等混杂因素后,与母亲血清中的可的宁含量最相关(FDR=0.046)。 结论 通过系统研究,探讨了孕妇和胎儿在烟草暴露环境中可能受到影响的通路,烟草暴露影响胎盘功能和胎儿生长的机制,对后续深入的分子机制研究提出思路。 Abstract:Objective To expand the understanding of the molecular mechanisms underlying tobacco exposure during pregnancy on pregnant women and their foetuses. Methods Firstly, the NCBI GEO database and EBI ArrayExpress database were systematically searched, and two gene expression profile datasets from placental tissues of smoking and non-smoking pregnant women were selected. After integrating and correcting these datasets, various bioinformatics methods and models including differential expression, functional annotation, enrichment analysis and regression analysis were applied to study the effects of tobacco exposure on pregnant women and foetuses. Results Amongst 476 significantly differentially expressed genes (FDR < 0.5, |log2FC|>0.3), 317 were up-regulated and 159 were down-regulated. After functional annotations and enrichment analyses using KEGG, GO, Reactome and MSigDb, these genes mainly appeared in extracellular structure (P=1.10×10-28), extracellular matrix (P=3.44×10-25) and mesenchymal development (P=2.60×10-13). Regression analysis was conducted to study molecular markers of tobacco exposure. CDCA7L was the most significant gene correlated with cotinine level after adjusting for confounding factors (FDR=0.046). Conclusion The pathways and the possible molecular mechanisms that pregnant women and foetuses may be affected by tobacco exposure are explored and discussed, and the ideas for future molecular mechanism research are proposed. -
表 1 数据集表型的分布情况[M(P25, P75)]
Table 1. The distribution of phenotypes in the dataset [M(P25, P75)]
数据集 例数 样本类型 年龄(岁) BMI 胎盘体积(cm3) 孕周(周) GSE18044 76 胎盘 33.0(28.5, 35.0) 23.0(20.4, 25.4) 1 023(765, 1 335) 39.0(38.5, 40.0) GSE27272 54 胎盘, 外周血, 脐带血 31.0(28.0, 33.0) 22.5(21.0, 25.0) 520(465, 600) 40.0(39.0, 40.0) 表 2 前5位显著差异表达基因
Table 2. The top five significantly differentially expressed genes
方式 基因符号 倍数变化 FDR 上调 CYP1A1 1.039 0.007 CYP1B1 1.034 0.007 TBC1D16 0.486 0.008 CYP1A2 0.522 0.015 ANGPTL6 0.386 0.042 下调 C1orf71 -0.395 0.049 LITAF -0.332 0.049 TNFAIP8L1 -0.487 0.066 CCDC69 -0.411 0.079 C14orf37 -0.881 0.086 表 3 显著差异的基因富集结果
Table 3. Significantly different gene enrichment results
方式 通路 数据库来源 P值 显著差异的上调基因所富集的通路 extracellular structure organization GO_BP 1.10×10-28 extracellular matrix organization GO_BP 3.44×10-25 mesenchyme development GO_BP 2.60×10-13 extracellular matrix structural constituent GO_MF 3.31×10-27 extracellular matrix structural constituent conferring tensile strength GO_MF 5.11×10-12 growth factor binding GO_MF 3.14×10-10 collagen-containing extracellular matrix GO_CC 1.19×10-35 extracellular matrix GO_CC 1.38×10-29 collagen trimer GO_CC 4.88×10-19 Extracellular matrix organization REACTOME 4.52×10-17 ECM proteoglycans REACTOME 3.20×10-13 Collagen chain trimerization REACTOME 2.46×10-10 LIM_MAMMARY_STEM_CELL_UP MsigDB_C2CGP 2.60×10-32 SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP MsigDB_C2CGP 1.32×10-30 LINDGREN_BLADDER_CANCER_CLUSTER_2B MsigDB_C2CGP 1.46×10-29 Steroid hormone biosynthesis KEGG 3.59×10-4 PI3K-Akt signaling pathway KEGG 4.22×10-4 cGMP-PKG signaling pathway KEGG 1.10×10-3 显著差异的下调基因所富集的通路 Cell surface interactions at the vascular wall REACTOME 1.04×10-5 Dectin-2 family REACTOME 5.18×10-5 Defective GALNT3 causes familial hyperphosphatemic tumoral calcinosis (HFTC) REACTOME 2.84×10-4 HAHTOLA_CTCL_PATHOGENESIS MsigDB_C2CGP 2.67×10-6 SENESE_HDAC1_TARGETS_UP MsigDB_C2CGP 3.56×10-5 MCLACHLAN_DENTAL_CARIES_UP MsigDB_C2CGP 3.62×10-5 -
[1] LANGE S, PROBST C, REHM J, et al. National, regional, and global prevalence of smoking during pregnancy in the general population: A systematic review and meta-analysis[J]. Lancet Glob Health, 2018, 6(7): e769-e776. doi: 10.1016/S2214-109X(18)30223-7 [2] CHINA TOROHHOSI. Report on health hazards of smoking in China: An updated summary[J]. Chin Circul J, 2021, 36(10): 937-952. [3] SUN W, HUANG X, WU H, et al. Maternal tobacco exposure and health-related quality of life during pregnancy: A national-based study of pregnant women in china[J]. Health Qual Life Outcomes, 2021, 19(1): 152. doi: 10.1186/s12955-021-01785-x [4] AVŞAR T S, MCLEOD H, JACKSON L. Health outcomes of smoking during pregnancy and the postpartum period: An umbrella review[J]. BMC Pregnancy Childbirth, 2021, 21(1): 254. doi: 10.1186/s12884-021-03729-1 [5] ANDERSON T M, LAVISTA FERRES J M, REN S Y, et al. Maternal smoking before and during pregnancy and the risk of sudden unexpected infant death[J]. Pediatrics, 2019, 143(4): e20183325. DOI: 10.1542/peds.2018-3325. [6] ASHFORD K, MCCUBBIN A, BARNETT J, et al. Longitudinal examination of prenatal tobacco switching behaviors and birth outcomes, including electronic nicotine delivery system (ends) and dual use[J]. Matern Child Health J, 2021, 25(8): 1175-1181. doi: 10.1007/s10995-021-03161-z [7] DE QUEIROZ ANDRADE E, DA SILVA SENA C R, COLLISON A, et al. Association between active tobacco use during pregnancy and infant respiratory health: A systematic review and meta-analysis[J]. BMJ Open, 2020, 10(9): e037819. DOI: 10.1136/bmjopen-2020-037819. [8] CARRERAS G, LACHI A, CORTINI B, et al. Burden of disease from exposure to secondhand smoke in children in europe[J]. Pediatric Research, 2021, 90(1): 216-222. doi: 10.1038/s41390-020-01223-6 [9] 中华全科医学编辑部. 无烟生活, 健康中国[J]. 中华全科医学, 2022, 20(2): 277. http://www.zhqkyx.net/article/id/1478656f-f267-44a6-9a5a-5208c9e5a4a7Editorial Department of Chinese General Practice. Smoke-free life, healthy China[J]. Chinese Journal of General Practice, 2022, 20(2): 277. http://www.zhqkyx.net/article/id/1478656f-f267-44a6-9a5a-5208c9e5a4a7 [10] SUTER M A, AAGAARD K M. The impact of tobacco chemicals and nicotine on placental development[J]. Prenat Diagn, 2020, 40(9): 1193-1200. doi: 10.1002/pd.5660 [11] BRUCHOVA H, VASIKOVA A, MERKEROVA M, et al. Effect of maternal tobacco smoke exposure on the placental transcriptome[J]. Placenta, 2010, 31(3): 186-191. doi: 10.1016/j.placenta.2009.12.016 [12] VOTAVOVA H, DOSTALOVA MERKEROVA M, FEJGLOVA K, et al. Transcriptome alterations in maternal and fetal cells induced by tobacco smoke[J]. Placenta, 2011, 32(10): 763-770. doi: 10.1016/j.placenta.2011.06.022 [13] RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. NAR, 2015, 43(7): e47. doi: 10.1093/nar/gkv007 [14] WU T, HU E, XU S, et al. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data[J]. The Innovation, 2021, 2(3): 100141. DOI: 10.1016/j.xinn.2021.100141. [15] DUCLOS G E, TEIXEIRA V H, AUTISSIER P, et al. Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution[J]. Sci Adv, 2019, 5(12): eaaw3413. DOI: 10.1126/sciadv.aaw3413. [16] KIM E Y, CHA Y J, LEE S H, et al. Early lung carcinogenesis and tumor microenvironment observed by single-cell transcriptome analysis[J]. Transl Oncol, 2022, 15(1): 101277. DOI: 10.1016/j.tranon.2021.101277. [17] MAHASSNI S H, ALI E Y I. The effects of firsthand and secondhand cigarette smoking on immune system cells and antibodies in saudi arabian males[J]. Indian J Clin Biochem, 2019, 34(2): 143-154. doi: 10.1007/s12291-018-0739-9 [18] KOLLA N J, BORTOLATO M. The role of monoamine oxidase a in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men[J]. Prog Neurobiol, 2020, 194: 101875. DOI: 10.1016/j.pneurobio.2020.101875. [19] TIAN Z H, YUAN C, YANG K, et al. Systematic identification of key genes and pathways in clear cell renal cell carcinoma on bioinformatics analysis[J]. Ann Transl Med, 2019, 7(5): 89. doi: 10.21037/atm.2019.01.18 [20] 王国芳, 王玉娟, 郎华. Panx1基因在非小细胞肺癌中的表达及生物学功能生物信息分析[J]. 中华全科医学, 2020, 18(5): 856-859. doi: 10.16766/j.cnki.issn.1674-4152.001375WANG G F, WANG Y J, LANG H. Expression of Panx1 gene in non-small cell lung cancer and bioinformatics analysis of biological function[J]. Chinese Journal of General Practice, 2020, 18(5): 856-859. doi: 10.16766/j.cnki.issn.1674-4152.001375 [21] MORALES-PRIETO D M, FUENTES-ZACARíAS P, MURRIETA-COXCA J M, et al. Smoking for two- effects of tobacco consumption on placenta[J]. Mol Aspects Med, 2021: 101023. DOI: 10.1016/j.mam.2021.101023. -