Analysis of the expression and clinical significance of POSTN in head and neck squamous carcinoma based on TCGA database
-
摘要:
目的 利用在线数据库和生物信息学方法分析POSTN基因在头颈部鳞状细胞癌中的差异表达对其预后的临床意义,寻找头颈部鳞状细胞癌新的生物标志物。 方法 使用TCGA公共数据库获取头颈部鳞癌患者的基本信息、POSTN的表达情况;利用Kaplan-Meier Plotter分析不同POSTN表达水平的头颈部鳞癌患者生存曲线;采用TIMER数据库分析POSTN与头颈部鳞癌中各种免疫细胞浸润的相关性;GEPIA数据库分析POSTN表达与免疫细胞标志物表达的相关性;GO和KEGG基因富集分析探索POSTN共表达基因的功能及其作用通路。 结果 POSTN在头颈部鳞癌中高表达(P<0.05),其表达与头颈部鳞癌患者的预后呈正相关;头颈部鳞癌患者的累积生存率与多种免疫细胞的浸润程度相关;POSTN表达水平与头颈部鳞癌中的巨噬细胞浸润程度呈正相关关系(P=0.024),并与M2型巨噬细胞标志物呈正相关关系(P<0.001),POSTN高表达促进巨噬细胞向M2型极化。富集分析显示POSTN与细胞外基质调节过程相关。 结论 POSTN表达与头颈部鳞癌患者预后及免疫浸润相关,并且其可能通过调节巨噬细胞极化而导致患者的不良预后。 Abstract:Objective To analyse the clinical significance of POSTN differential expression in the diagnosis and prognosis of head and neck squamous cell carcinoma using online databases and bioinformatics methods and to find new biomarkers for this disease. Methods TCGA public database was used to obtain basic information of head and neck squamous carcinoma patients, the expression of POSTN and the correlation between POSTN and clinicopathological parameters of head and neck squamous carcinoma patients. The Kaplan-Meier Plotter was used to analyse the survival curve of head and neck squamous carcinoma patients with different POSTN expression levels. TIMER analysis was used to determine the correlation between POSTN and various immune cell infiltrations in head and neck squamous carcinoma. GEPIA database analysis was used to determine the correlation between POSTN expression and immune cell marker expression. GO and KEGG gene enrichment analysis were used to explore the function of differentially expressed genes and their pathways of action. Results POSTN was highly expressed in head and neck squamous carcinoma (P < 0.05), and its expression was positively correlated with prognosis of head and neck squamous carcinoma patients, the cumulative survival rate of head and neck squamous carcinoma patients was correlated with the degree of infiltration of multiple immune cells. POSTN expression level was positively correlated with the degree of macrophage infiltration in head and neck squamous carcinoma (P=0.024) and significantly positively correlated with M2 macrophage markers (P < 0.001), with high POSTN expression promoting macrophage polarisation towards M2 type. Enrichment analysis showed that POSTN was associated with extracellular matrix regulatory processes. Conclusion POSTN expression is associated with prognosis and immune infiltration in patients with head and neck squamous carcinoma, and it may contribute to poor patient prognosis by regulating macrophage polarisation. -
图 1 POSTN在多种癌症中的表达差异
注:ACC为肾上腺皮质癌;BLCA为膀胱尿路上皮癌;BRCA为乳腺浸润癌;BRCA为乳腺浸润癌;CESC为宫颈鳞癌和腺癌;CHOL为胆管癌;COAD为结肠癌;COAD为结肠癌;DLBC为弥漫性大B细胞淋巴瘤;ESCA为食管癌;GBM为多形成性胶质细胞瘤;HNSC为头颈鳞状细胞癌;KICH为肾嫌色细胞癌;KIRC为肾透明细胞癌;KIRP为肾乳头状细胞癌;LAML为急性髓细胞样白血病;LGG为脑低级别胶质瘤;LIHC为肝细胞肝癌;LUAD为肺腺癌;LUSC为肺鳞癌;MESO为间皮瘤;OV为卵巢浆液性囊腺癌;PAAD为胰腺癌;PCPG为嗜铬细胞瘤和副神经节瘤;PRAD为前列腺癌;READ为直肠腺癌;SARC为肉瘤;SKCM为皮肤黑色素瘤;STAD为胃癌;TGCT为睾丸癌;THCA为甲状腺癌;THYM为胸腺癌;UCEC为子宫内膜癌;UCS为子宫肉瘤;UVM为葡萄膜黑色素瘤。aP<0.01,bP<0.05。
Figure 1. Expression differences of POSTN in various cancers
表 1 头颈部鳞癌中POSTN表达水平与GEPIA数据库中免疫细胞标志物表达水平的相关性
Table 1. Correlation between the expression level of POSTN in head and neck squamous cell carcinoma and the expression level of immune cell markers in GEPIA database
细胞种类 基因标志物 肿瘤 非肿瘤 r值 P值 r值 P值 单核细胞 CD86 0.280 < 0.001 0.190 0.220 CD115(CSF1R) 0.140 < 0.001 0.280 0.062 肿瘤相关巨噬细胞 CCL2 0.290 < 0.001 0.200 0.190 CD68 0.330 < 0.001 0.055 0.730 IL-10 0.370 < 0.001 0.160 0.300 M1型巨噬细胞 INOS(NOS2) -0.069 0.120 -0.110 0.470 IRF5 0.010 0.820 -0.200 0.200 COX2(PTGS2) -0.041 0.350 0.032 0.320 M2型巨噬细胞 CD163 0.350 < 0.001 0.680 < 0.001 MS4A4A 0.370 < 0.001 0.420 0.005 表 2 POSTN的GO功能富集和KEGG通路富集分析
Table 2. GO functional enrichment and KEGG pathway enrichment analysis of POSTN
类别 名称 P值 数量 BP 细胞外结构组织 <0.001 55 BP 细胞外基质组织 <0.001 52 BP 骨化作用 <0.001 35 BP 胶原蛋白纤维组织 <0.001 16 BP 肌肉系统形成 <0.001 31 CC 含胶原蛋白的细胞外基质 <0.001 62 CC 胶原蛋白三聚体 <0.001 20 CC 内质网腔体 <0.001 26 CC 纤维状胶原蛋白三聚体 <0.001 7 CC 带状胶原蛋白纤维 <0.001 7 MF 细胞外基质结构成分 <0.001 39 MF 胶原蛋白结合 <0.001 16 MF 整合素结合 <0.001 20 MF 赋予抗拉强度的细胞外基质结构成分 <0.001 13 MF 糖胺聚糖结合 <0.001 24 KEGG ECM-受体的相互作用 <0.001 16 KEGG PI3K-Akt信号通路 <0.001 23 KEGG 蛋白质消化吸收 <0.001 13 KEGG 局部黏附 <0.001 16 KEGG 人乳头瘤病毒感染 <0.001 18 注:BP为生物过程,MF为分子功能,CC为细胞定位。 -
[1] Global Burden of Disease Cancer Collaboration, FITZMAURICE C, ABATE D, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2019, 5(12): 1749-1768. doi: 10.1001/jamaoncol.2019.2996 [2] 蒋华丽, 杨成, 翁芬女, 等. 头颈部肿瘤放疗患者自我感受负担现状及影响因素分析[J]. 中华全科医学, 2019, 17(1): 144-146, 153. doi: 10.16766/j.cnki.issn.1674-4152.000623JIANG H L, YANG C, WENG F N, et al. Study on the status of self-perceived burden and its influencing factors in patients with head and neck tumor for radiotherapy[J]. Chinese Journal of General Practice, 2019, 17(1): 144-146, 153. doi: 10.16766/j.cnki.issn.1674-4152.000623 [3] 罗俊婷, 胡欣, 陈国芳, 等. 骨膜蛋白与代谢性疾病[J]. 国际内分泌代谢杂志, 2018, 38(1): 26-28. doi: 10.3760/cma.j.issn.1673-4157.2018.01.007LUO J T, HU X, CHEN G F, et al. Periostin and metabolic diseases[J]. International JOurnal of Endocrinology and Metabolism, 2018, 38(1): 26-28. doi: 10.3760/cma.j.issn.1673-4157.2018.01.007 [4] OH H J, BAE J M, WEN X Y, et al. Overexpression of POSTN in tumor stroma is a poor prognostic indicator of colorectal cancer[J]. J Pathol Transl Med, 2017, 51(3): 306-313. doi: 10.4132/jptm.2017.01.19 [5] 冀慎英, 张湘豫, 邹先琼. S100A8/A9在头颈部肿瘤发生发展中的作用及机制[J]. 医学综述, 2020, 26(21): 4235-4240. doi: 10.3969/j.issn.1006-2084.2020.21.015JI S Y, ZHANG X Y, ZOU X Q. Roles and mechanisms of S100A8/A9 in initiation and progression of head and neck cancer[J]. Medical Recapitulate, 2020, 26(21): 4235-4240. doi: 10.3969/j.issn.1006-2084.2020.21.015 [6] ROUTRAY S, KUMAR R, DATTA K K, et al. An integrated approach for identification of a panel of candidate genes arbitrated for invasion and metastasis in oral squamous cell carcinoma[J]. Sci Rep, 2021, 11(1): 6208. doi: 10.1038/s41598-021-85729-x [7] WANG Z C, CHEN M L, QIU Y B, et al. Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment[J]. Biosci Rep, 2021, 41(2): BSR20202 439. doi: 10.1042/BSR20202439 [8] RATAJCZAK-WIELGOMAS K, KMIECIK A, GRZEGRZOŁKA J, et al. Prognostic significance of stromal periostin expression in non-small cell lung cancer[J]. Int J Mol Sci, 2020, 21(19): 7025. doi: 10.3390/ijms21197025 [9] CHEN K, LI Z H, ZHANG M Y, et al. MiR-876 inhibits EMT and liver fibrosis via POSTN to suppress metastasis in hepatocellular carcinoma[J]. BioMed Res Int, 2020. DOI: 10.1155/2020/1964219. [10] 郭小凡. 低氧促进胶质母细胞瘤抑制性免疫微环境的形成[D]. 济南: 山东大学, 2020.GUO X F. Hypoxia promotes the formation of inhibitory immune microenvironment in glioblastoma[D]. Jinan: Shandong University, 2020. [11] ZHU M H, ZHANG C Y, CHEN D H, et al. MicroRNA-98-HMGA2-POSTN signal pathway reverses epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma[J]. Biomed Pharmacother, 2019. DOI: 10.1016/j.biopha.2019.108998. [12] OKAZAKI T, TAMAI K, SHIBUYA R, et al. Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer[J]. Oncotarget, 2018, 9(58): 31187-31199. doi: 10.18632/oncotarget.25435 [13] CHEN G, WANG Y, ZHAO X, et al. A positive feedback loop between Periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation[J]. J Exp Clin Cancer Res, 2021, 40(1): 218. doi: 10.1186/s13046-021-02011-8 [14] TANG M, LIU B J, BU X C, et al. Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment[J]. Cancer Sci, 2018, 109(5): 1309-1318. doi: 10.1111/cas.13567 [15] ARNETH B. Tumor microenvironment[J]. Medicina (Kaunas), 2019, 56(1): 15. doi: 10.3390/medicina56010015 [16] LIN B, Li H, ZHANG T W, et, al. Comprehensive analysis of macrophage-related multigene signature in the tumor microenvironment of head and neck squamous cancer[J]. Aging (Albany NY), 2021, 13(4): 5718-5747. [17] GAMBARDELLA V, CASTILLO J, TARAZONA N, et al. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target[J]. Cancer Treat Rev, 2020, 86: 102015. DOI: 10.1016/j.ctrv.2020.102015. [18] MA C Y, HORLAD H, OHNISHI K, et al. CD163-positive cancer cells are potentially associated with high malignant potential in clear cell renal cell carcinoma[J]. Med Mol Morphol, 2018, 51(1): 13-20. doi: 10.1007/s00795-017-0165-8 [19] MATTIOLA I, TOMAY F, DE P M, et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis[J]. Nat Immunol, 2019, 20(8): 1012-1022. doi: 10.1038/s41590-019-0417-y [20] WALKER C, MOJARES E, DEL RÍO HERNÁNDEZ A. Role of extracellular matrix in development and cancer progression[J]. Int J Mol Sci, 2018, 19(10): 3028. [21] PETROSYAN A, DA S S, TRIPURANENI N, et al. A step towards clinical application of acellular matrix: A clue from macrophage polarization[J]. Matrix Biol, 2017, 57-58: 334-346. DOI: 10.1016/j.matbio.2016.08.009. -