Functional enrichment and pathway analysis of differential expression of exosome lncRNA in colorectal cancer
-
摘要:
目的 通过探讨差异性表达的外泌体lncRNA及其调控的信号通路在结直肠癌发生、发展中的作用,以期为结直肠癌的诊断和治疗提供新的靶点。 方法 使用R软件线性回归模型软件包limma包进行差异表达分析,根据筛选阈值得到显著差异表达的lncRNA和mRNA;通过计算差异表达lncRNA与mRNA皮尔逊相关性系数,获得其之间协同表达关系,通过相关系数筛选存在正向协同表达的lncRNA-mRNA关系对;分别对lncRNA的协同表达mRNA进行GO功能和KEGG通路富集分析,以间接预测lncRNA的功能。 结果 在32例健康志愿者和12例结直肠癌患者中筛选出差异性表达的外泌体lncRNA共202个、mRNA共1 014个。验证出差异性表达的lncRNA-mRNA关系对10个。对lncRNA协同表达的mRNA进行功能富集显示,差异性表达的外泌体lncRNA可能与B细胞受体信号通路、NF-κB信号通路、JAK-STAT信号通路、抗原处理与呈递信号通路和NOD样受体信号通路活化密切相关。 结论 深入探索外泌体lncRNA在结直肠癌中的差异性表达、功能富集及通路活化,有助于为结直肠癌的治疗提供新思路,为诊断提供新靶点。 Abstract:Objective To explore the role of differential expression of exosome lncRNA and its regulated signal pathway in the occurrence and development of colorectal cancer and provide a new target for the diagnosis and treatment of colorectal cancer. Methods The linear regression model package limma of R software was used to analyse the differential expression of lncRNA and mRNA. By calculating the Pearson correlation coefficient between differentially expressed lncRNA and mRNA, their co-expression was obtained. The positive co-expression of lncRNA-mRNA was screened by using a correlation coefficient. Go function and KEGG pathway enrichment of mRNA co-expressed with lncRNA were analysed to indirectly predict the function of lncRNA. Results A total of 202 differentially expressed exosome lncRNAs and 1014 exosome mRNA were screened from 32 healthy volunteers and 12 colorectal cancer patients. Ten pairs of lncRNA-mRNA co-expression were verified. Functional enrichment of mRNA co-expressed by lncRNA showed that differentially expressed exosome lncRNA may be closely related to B cell receptor signal pathway, NF-KB signal pathway, JAK-STAT signal pathway, antigen processing and presentation signal pathway and NOD-like receptor signal pathway activation. Conclusion In-depth exploration of differential expression, functional enrichment and pathway activation of exosome lncRNA in colorectal cancer is important to provide new ideas for the diagnosis and treatment of colorectal cancer. -
Key words:
- Colorectal cancer /
- Exosome /
- Long non-coding RNA
-
表 1 结直肠癌外泌体中差异表达lncRNA、mRNA统计信息
差异表达的RNA 上调 下调 合计 阈值 lncRNA 112 90 202 |log2FC|>1.000,P < 0.05 mRNA 436 578 1 014 |log2FC|>0.585,P < 0.05 -
[1] GRAF W D. Exome Sequencing and molecular diagnosis[J]. Dtsch Arztebl Int, 2019, 116(12): 195-196. http://www.ncbi.nlm.nih.gov/pubmed/31056084 [2] MENG W, HAO Y, HE C, et al. Exosome-orchestrated hypoxic tumor microenvironment[J]. Mol Cancer, 2019, 18(1): 57. doi: 10.1186/s12943-019-0982-6 [3] PENG W X, KOIRALA P, MO Y Y. LncRNA-mediated regulation of cell signaling in cancer[J]. Oncogene, 2017, 36(41): 5661-5667. doi: 10.1038/onc.2017.184 [4] GHAFOURI-FARD S, ESMAEILI M, TAHERI M. H19 lncRNA: Roles in tumorigenesis[J]. Biomed Pharmacother, 2020, 123: 109774. DOI: 10.1016/j.biopha.2019.109774. [5] 曾薇, 刘翼, 李文婷, 等. lncRNA DLEU2转录调控因子的生物信息学分析[J]. 中华全科医学, 2021, 19(7): 1114-1116, 1120. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202107012.htm [6] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660 [7] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. doi: 10.3322/caac.21338 [8] 张卫刚, 张言言, 张宪文, 等. 不同分期结直肠癌患者的预后分析: 一项基于SEER数据库的回顾性研究[J]. 中华结直肠疾病电子杂志, 2017, 6(1): 21-27. doi: 10.3877/cma.j.issn.2095-3224.2017.01.005 [9] SEO N, AKIYOSHI K, SHIKU H. Exosome-mediated regulation of tumor immunology[J]. Cancer Sci, 2018, 109(10): 2998-3004. doi: 10.1111/cas.13735 [10] WU Q, ZHOU L, LV D, et al. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression[J]. J Hematol Oncol, 2019, 12(1): 53. doi: 10.1186/s13045-019-0739-0 [11] SUN Z, YANG S, ZHOU Q, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment[J]. Mol Cancer, 2018, 17(1): 82. doi: 10.1186/s12943-018-0831-z [12] MASHOURI L, YOUSEFI H, AREF A R, et al. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance[J]. Mol Cancer, 2019, 18(1): 75. doi: 10.1186/s12943-019-0991-5 [13] ZHENG R, DU M, WANG X, et al. Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression[J]. Mol Cancer, 2018, 17(1): 143. doi: 10.1186/s12943-018-0880-3 [14] LIANG Y, SONG X, LI Y, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis[J]. Mol Cancer, 2020, 19(1): 85. doi: 10.1186/s12943-020-01206-5 [15] JIANG F, LIU M, WANG H, et al. Wu Mei Wan attenuates CAC by regulating gut microbiota and the NF-κB/IL6-STAT3 signaling pathway[J]. Biomed Pharmacother, 2020, 125: 109982. DOI: 10.1016/j.biopha.2020.109982. [16] HONG Y G, XIN C, ZHENG H, et al. miR-365a-3p regulates ADAM10-JAK-STAT signaling to suppress the growth and metastasis of colorectal cancer cells[J]. J Cancer, 2020, 11(12): 3634-3644. doi: 10.7150/jca.42731 [17] GARAUD S, BUISSERET L, SOLINAS C, et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer[J]. JCI Insight, 2019, 5(18): e129641. [18] OLDHAM R J, MOCKRIDGE CI, JAMES S, et al. FcγRII (CD32) modulates antibody clearance in NOD SCID mice leading to impaired antibody-mediated tumor cell deletion[J]. J Immunother Cancer, 2020, 8(1): e000619. DOI: 10.1136/jitc-2020-000619. [19] MAYKEL J, LIU J H, LI H, et al. NOD-scidIl2rg (tm1Wjl) and NOD-Rag1 (null) Il2rg (tm1Wjl) : A model for stromal cell-tumor cell interaction for human colon cancer[J]. Dig Dis Sci, 2014, 59(6): 1169-1179. doi: 10.1007/s10620-014-3168-5 [20] WANG S, HE Z, WANG X, et al. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction[J]. Elife, 2019, 8: e49020. DOI: 10.7554/eLife.49020. -