[1] |
PAVALEK L R, MUELLER C, JEBBIA M R, et al. Near-infrared spectroscopy in extremely preterm infants[J]. Front Pediatr, 2021, 8(1): 2296-2360. doi: 10.3389/fped.2020.624113/full
|
[2] |
SEAGER E, LONGLEY C, ALADANGADY N, et al. Measurement of gut oxygenation in the neonatal population using near-infrared spectroscopy: A clinical tool?[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(1): 76-86. doi: 10.1136/archdischild-2018-316750
|
[3] |
BRUCKNER M, PICHLER G, URLESBERGER B. NIRS in the fetal to neonatal transition and immediate postnatal period[J]. Semin Fetal Neonatal Med, 2020, 25(2): 1-6. https://pubmed.ncbi.nlm.nih.gov/32007425/
|
[4] |
NASR V G, BERGERSEN L T, LIN H M, et al. Validation of a second-generation near-infrared spectroscopy monitor in children with congenital heart disease[J]. Anesth Analg, 2019, 128(4): 661-668. doi: 10.1213/ANE.0000000000002796
|
[5] |
BRUNS N, MOOSMANN J, MNCH F, et al. How to administer near-infrared spectroscopy in critically ill neonates, infants, and children[J]. J Vis Exp, 2020, 19(162): 1940-2087. https://pubmed.ncbi.nlm.nih.gov/32894267/
|
[6] |
VANDEKERCKHOVE K, COOMANS I, MOERMAN A, et al. Differences in cerebral and muscle oxygenation patterns during exercise in children with univentricular heart after Fontan operation compared to healthy peers[J]. Int J cardiol, 2019, 290: 86-92. doi: 10.1016/j.ijcard.2019.05.040
|
[7] |
GRADIDGE E A, GRIMALDI L M, CASHEN K, et al. Near-infrared spectroscopy for prediction of extubation success after neonatal cardiac surgery[J]. Cardiol Young, 2019, 29(6): 787-792. doi: 10.1017/S1047951119000829
|
[8] |
SPAEDER M C, KLUGMAN D, SKUROW T K, et al. Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: Relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome[J]. Pediatr Crit Care Med, 2017, 18(3): 213-218. doi: 10.1097/PCC.0000000000001056
|
[9] |
丁丽丽, 王军. 盐酸纳美芬联合鼠神经生长因子对新生儿缺血缺氧性脑病的效果及对其脑电图背景活动和愈后的影响[J]. 河北医学, 2020, 26(1): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HCYX202001023.htm
|
[10] |
王海艳, 王丽艳, 王娜, 等. CK、CK-MB在新生儿缺血缺氧性脑病中的变化及临床意义[J]. 国际检验医学杂志, 2017, 38(22): 3177-3178. doi: 10.3969/j.issn.1673-4130.2017.22.039
|
[11] |
RAJARAM A, BALE G, KEWIN M, et al. Simultaneous monitoring of cerebral perfusion and cytochrome C oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy[J]. Biomed Opt Express, 2018, 9(6): 2588-2603. doi: 10.1364/BOE.9.002588
|
[12] |
车伟坤, 谢淑霞, 李正森, 等. 近红外光谱检测血氧饱和度技术对新生儿脑缺氧的早期评估应用[J]. 医学理论与实践, 2019, 32(17): 2702-2703. https://www.cnki.com.cn/Article/CJFDTOTAL-YXLL201917009.htm
|
[13] |
EICHHORN L, ERDFELDER F, KESSLER F, et al. Influence of apnea-induced hypoxia on catecholamine release and cardiovascular dynamics[J]. Int J Sports Med, 2017, 38(2): 85-91. https://pubmed.ncbi.nlm.nih.gov/27454133/
|
[14] |
黄丽娟. 枸橼酸咖啡因改善早产儿辅助通气及呼吸暂停的临床效果及安全性分析[J]. 山西医药杂志, 2020, 49(13): 1686-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYY202013019.htm
|
[15] |
MAYER B, POHL M, HUMMLER H D, et al. Cerebral oxygenation and desaturations in preterm infants-a longitudinal date analysis[J]. J Neonatal Perinatal Med, 2017, 10(3): 267-273. doi: 10.3233/NPM-16124
|
[16] |
WALTER L M, AHMED B, ODOIA, et al. Bradycardias are associated with more severe effects on cerebral oxygenation in very preterm infants than in late preterm infants[J]. Early Hum Dev, 2018, 127(1): 33-41. https://www.sciencedirect.com/science/article/pii/S0378378218303487
|
[17] |
VAN B F, MINTZER J P. Monitoring cerebral oxygenation of the immature brain: A neuroprotective strategy?[J]. Pediatr Res, 2018, 84(2): 159-164. doi: 10.1038/s41390-018-0026-8
|
[18] |
KATHERIA A C, MORALES A L, POELTLE D, et al. Association between early cerebral oxygenation and neurodevelopmental impairment or death in premature infants[J]. J Perinatol, 2021: 1-6. DOI: 10.1038/s41372-021-00942-w.
|
[19] |
KATHERIA A C, HARBERT M J, NAGARAJ S B, et al. The neu-prem trial: Neuromonitoring of brains of infants born preterm during resuscitation-a prospective observational cohort study[J]. J Pediatr, 2018, 198: 209-213. doi: 10.1016/j.jpeds.2018.02.065
|
[20] |
BEAUSOLEIL T P, JANAILLAC M, BARRINGTON K J, et al. Cerebral oxygen saturation and peripheral perfusion in the extremely premature infant with intraventricular and/or pulmonary haemorrhage early in life[J]. Sci Rep, 2018, 8(1): 6511-6523. doi: 10.1038/s41598-018-24836-8
|
[21] |
江进平, 张志群. 两种通气方式治疗新生儿呼吸窘迫综合征的临床疗效比较[J]. 中华全科医学, 2019, 17(1): 98-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201901028.htm
|
[22] |
洪玲, 姚明. 早期联合应用NCPAP和PS治疗新生儿呼吸窘迫综合征效果分析[J]. 现代医药卫生, 2018, 34(15): 2385-2387. doi: 10.3969/j.issn.1009-5519.2018.15.041
|
[23] |
朱志成, 陈超. 新生儿经鼻间歇正压通气的研究进展[J]. 中国当代儿科杂志, 2017, 19(12): 1301-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKZ201712016.htm
|
[24] |
李磊, 李杰. 无创通气在治疗新生儿呼吸系统疾病中的效果[J]. 安徽医学, 2020, 41(1): 59-62. doi: 10.3969/j.issn.1000-0399.2020.01.018
|
[25] |
ERICKSEN K, ALPAN G, LA E F. Effect of ventilator modes on neonatal cerebral and peripheral oxygenation using near-infrared spectroscopy[J]. Acta Paediatr, 2020: 1-6. DOI: 10.1111/apa.15600.
|
[26] |
SADEGHNIA A, FOROSHANI M Z, BADIEI Z. A comparative study of the effect of nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure on the regional brain tissue oximetry in premature newborns weighing < 1 500 g[J]. Int J Prev Med, 2017, 8: 41. doi: 10.4103/ijpvm.IJPVM_233_16
|
[27] |
PALLERI E, WACKERNAGEL D, WESTER T, et al. Low splanchnic oxygenation and risk for necrotizing enterocolitis in extremely preterm newborns[J]. J Pediatr Gastroenterol Nutr, 2020, 71(3): 401-406. doi: 10.1097/MPG.0000000000002761
|
[28] |
VANDER H M, HULSCHER J B F, BOS A F, et al. Near-infrared spectroscopy as a diagnostic tool for necrotizing enterocolitis in preterm infants[J]. Pediatr Res, 2020: 1-8. DOI: 10.1038/s41390-020-01186-8.
|
[29] |
KUIK S J, KALTEREN W S, MEBIUS M J, et al. Predicting intestinal recovery after necrotizing enterocolitis in preterm infants[J]. Pediatr Res, 2020, 87(5): 903-909. doi: 10.1038/s41390-019-0634-y
|
[30] |
KUIK S J, VAN H M, BRUGGINK J M, et al. Intestinal oxygenation and survival after surgery for necrotizing enterocolitis: An observational cohort study[J]. Ann Surg, 2020: 1-8. DOI: 10.1097/SLA.0000000000003913.
|
[31] |
FUHRMAN D Y, KELLUM J A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30(1): 60-65. doi: 10.1097/ACO.0000000000000412
|
[32] |
胡艳, 陶敏, 潘星. 慢性肾脏病人群中高尿酸血症的患病率及危险因素研究[J]. 中华全科医学, 2020, 18(12): 1989-1993. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202012004.htm
|
[33] |
刘思, 韦红. 尿生物标志物在新生儿急性肾损伤诊断中的应用研究进展[J]. 现代医药卫生, 2020, 36(20): 3286-3289. doi: 10.3969/j.issn.1009-5519.2020.20.029
|
[34] |
章容, 董文斌. 早产儿肾损伤及检测[J]. 中国当代儿科杂志, 2018, 20(4): 332-337. https://www.cnki.com.cn/Article/CJFDTOTAL-BQEB201903031.htm
|
[35] |
HARER M W, ADEGBORO C O, RICHARD L J, et al. Non-invasive continuous renal tissue oxygenation monitoring to identify preterm neonates at risk for acute kidney injury[J]. Pediatr Nephrol, 2021: 1-9. DOI: 10.1007/s00467-020-04855-2.
|
[36] |
CHOCK V Y, FRYMOYER A, YEH C G, et al. Renal saturation and acute kidney injury in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia[J]. J Pediatr, 2018, 200: 232-239. doi: 10.1016/j.jpeds.2018.04.076
|
[37] |
VILLENEUVE A, ARSENAULT V, LACROIX J, et al. Neonatal red blood cell transfusion[J]. Vox Sang, 2020: 1-13. DOI: 10.1111/vox.13036.
|
[38] |
AJAYI O O, DAVIS N L, SALEEM B, et al. Impact of red blood cell transfusions on intestinal barrier function in preterm infants[J]. J Neonatal Perinatal Med, 2019, 12(1): 95-101. doi: 10.3233/NPM-1828
|
[39] |
BIANCHI M, PAPACCI P, VALENTINI C G, et al. Umbilical cord blood as a source for red-blood-cell transfusion in neonatology: A systematic review[J]. Vox Sang, 2018, 113(8): 713-725. doi: 10.1111/vox.12720
|
[40] |
刘露, 张鹏, 徐素华, 等. 红细胞持续输注3小时和4小时改善贫血早产儿脑组织氧合的非随机对照试验[J]. 中国循证儿科杂志, 2018, 13(5): 321-326 doi: 10.3969/j.issn.1673-5501.2018.05.001
|
[41] |
SHARAFUTDINOVA D, BALASHOVA E, IONOV O, et al. Application of near-infrared spectroscopy in extremely and very low birth weight infants for red blood cells transfusion[J]. Pediatr Hematol/Oncol Immunopathol, 2020, 19(3): 18-25. doi: 10.24287/1726-1708-2020-19-3-18-25
|