Predictive value of the new predictive model AULTS score for ischemic stroke
-
摘要:
目的 本研究旨在建立新的预测模型,为脑卒中发病风险的评估提供新的方法。 方法 选择2012—2017年于重庆铜梁区中医院神经内科临床诊断为脑卒中和同时期住院或门诊体检的非脑卒中患者为研究对象。SPSS 22.0统计学软件和R语言用来进行数据分析和模型构建,根据ROC曲线下面积排序,筛选构建模型所用的变量,模型的构建采用R语言进行,并用列线图来呈现。 结果 单因素分析显示缺血性脑卒中组和对照组饮酒、尿酸、血脂和收缩压差异有统计学意义(均P < 0.05)。通过ROC曲线下面积排序进入最终模型的变量为年龄(AUC=0.737)、尿酸(AUC=0.567)、甘油三酯(AUC=0.537)、低密度脂蛋白胆固醇(AUC=0.541)、收缩压(AUC=0.615),预测模型对脑卒中的预测价值的ROC曲线下面积为0.789(95% CI:0.765~0.814, P < 0.001)。根据模型预测积分构建新型列线图,按照模型预测可能性积分四分位,位于Q1发生脑卒中的概率为18.3%,Q2发生脑卒中的概率为40.3%,Q3发生脑卒中的概率为60.0%,Q4发生脑卒中的概率为82.7%。 结论 本研究显示新型风险预测模型对脑卒中有良好的预测价值,值得推广应用。 Abstract:Objective To establish a new predictive model to provide a new method for the assessment of the risk of stroke. Methods Data were collected from hospitalised patients who were clinically diagnosed with stroke in the Department of Neurology, Chongqing Tongliang District Hospital of Traditional Chinese Medicine from 2012 to 2017. The controls were selected from subjects of outpatient physical examination during the same period. SPSS 22.0 software and R software were used for data analysis and model construction. We selected variables according to the area under the ROC curve. These variables were used to construct the model. The model construction was carried out in R software and presented with a nomogram. Results Univariate analysis showed significant differences in drinking, uric acid, blood lipids and systolic blood pressure between the ischemic stroke group and the control group (all P < 0.05). The variables that entered the final model included age (AUC=0.737), uric acid (AUC=0.567), triglycerides (AUC=0.537), low-density lipoprotein cholesterol (AUC=0.541) and systolic blood pressure (AUC=0.615). The area under the ROC curve of the predictive value of the predictive model for stroke was 0.789 (95% CI: 0.765-0.814, P < 0.001). We constructed a new nomogram based on the model prediction score. According to the model prediction probability score quartile, the probabilities of stroke in Q1, Q2, Q3 and Q4 were 18.3%, 40.3%, 60.0% and 82.7%, respectively. Conclusion This study shows that the new risk prediction model has good predictive value for stroke and is worthy of popularisation and application. -
Key words:
- Stroke /
- Hypertension /
- Prediction model /
- Nomogram
-
表 1 脑卒中组和健康对照组临床资料比较
组别 例数 年龄(x ±s,岁) 性别[例(%)] 吸烟[例(%)] 饮酒[例(%)] 尿素氮(x ±s,mmol/L) 肌酐(x ±s,μmol/L) 尿酸(x ±s,mmol/L) 葡萄糖(x ±s,mmol/L) 男性 女性 脑卒中组 644 49.76±14.50 340(52.80) 304(47.20) 190(29.50) 46(7.14) 4.79±1.90 72.16±21.46 290.37±78.72 5.32±2.03 对照组 662 50.47±17.00 350(52.87) 312(47.13) 158(23.87) 73(11.03) 4.94±1.54 70.87±19.38 276.68±81.84 5.24±1.73 统计量 -0.636a 0.001b 2.900b 5.947b 1.645a -1.089a -3.076a -0.710a P值 0.557 0.978 0.091 0.016 0.100 0.276 0.002 0.478 组别 例数 TC (x ±s,mmol/L) TG (x ±s,mmol/L) HDL-C (x ±s,mmol/L) LDL-C (x ±s,mmol/L) BMI (x ±s) 收缩压(x ±s,mm Hg) 舒张压(x ±s,mm Hg) 脑卒中组 644 4.50±1.18 1.74±1.67 1.19±0.37 2.93±0.97 25.98±4.29 145.36±24.84 89.05±18.86 对照组 662 4.68±1.15 1.52±1.11 1.27±0.43 2.73±0.85 26.41±4.20 136.10±23.05 87.10±20.21 统计量 2.828a -2.847a 3.762a 3.990a 1.803a 6.900a 1.701a P值 0.005 0.004 < 0.001 < 0.001 0.072 < 0.001 0.089 注:a为t值,b为χ2值; 1 mm Hg=0.133 kPa。 表 2 多变量logistic回归分析结果
变量 B SE Wald χ2 P值 OR(95% CI) 年龄 0.071 0.006 145.291 < 0.001 1.074(1.062~1.087) 性别 0.011 0.163 0.005 0.944 1.011(0.735~1.391) 肌酐 -0.001 0.003 0.217 0.642 0.999(0.992~1.005) 尿酸 0.002 0.001 6.740 0.009 1.002(1.001~1.004) 甘油三酯 0.134 0.055 5.868 0.015 1.143(1.026~1.275) 总胆固醇 0.075 0.112 0.447 0.504 1.077(0.866~1.341) 高密度脂蛋白 -0.009 0.189 0.002 0.964 0.991(0.685~1.435) 低密度脂蛋白 0.317 0.128 6.173 0.013 1.374(1.070~1.764) 吸烟 0.510 0.211 5.826 0.016 1.666(1.101~2.522) 饮酒 -0.033 0.288 0.013 0.908 0.967(0.550~1.701) 收缩压 0.032 0.005 40.909 < 0.001 1.033(1.022~1.043) 舒张压 -0.062 0.008 65.377 0.089 0.939(0.925~0.109) 常数项 4.304 0.586 54.001 < 0.001 73.982 表 3 入选变量的ROC曲线下面积
变量 AUC SE P值 95% CI 年龄 0.737 0.014 < 0.001 0.710~0.774 尿酸 0.567 0.016 < 0.001 0.535~0.598 甘油三酯 0.537 0.016 0.024 0.505~0.568 低密度脂蛋白 0.541 0.016 0.012 0.509~0.572 收缩压 0.615 0.016 < 0.001 0.585~0.646 -
[1] ZHOU M, WANG H, ZHU J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: A systematic subnational analysis for the global burden of disease study 2013[J]. Lancet, 2016, 387(10015): 251-272. doi: 10.1016/S0140-6736(15)00551-6 [2] YANG X, LI J, HU D, et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population: The China-PAR Project (prediction for ASCVD risk in China)[J]. Circulation, 2016, 134(19): 1430-1440. doi: 10.1161/CIRCULATIONAHA.116.022367 [3] PIKULA A, BEISER A S, WANG J, et al. Lipid and lipoprotein measurements and the risk of ischemic vascular events: Framingham Study[J]. Neurology, 2015, 84(5): 472-479. doi: 10.1212/WNL.0000000000001202 [4] LONG C, LI M. Age and stroke severity: Hazards for intravenous thrombolysis?[J]. Med Princ Pract, 2016, 25(1): 99-100. doi: 10.1159/000439383 [5] ALONSO DE LECINANA M, MAZYA M V, KOSTULAS N, et al. Stroke care and application of thrombolysis in Ibero-America: Report from the SITS-SIECV Ibero-American stroke register[J]. Stroke, 2019, 50(9): 2507-2512. doi: 10.1161/STROKEAHA.119.025668 [6] WAJNGARTEN M, SILVA G S. Hypertension and stroke: Update on treatment[J]. Eur Cardiol, 2019, 14(2): 111-115. doi: 10.15420/ecr.2019.11.1 [7] PISISTOIA F, SACCO S, DEGAN D, et al. Hypertension and stroke: Epidemiological aspects and clinical evaluation[J]. High Blood Press Cardiovasc Prev, 2016, 23(1): 9-18. doi: 10.1007/s40292-015-0115-2 [8] LEE S, NA Y, TAE W S, et al. Clinical and neuroimaging factors associated with aphasia severity in stroke patients: Diffusion tensor imaging study[J]. Sci Rep, 2020, 10(1): 12874. doi: 10.1038/s41598-020-69741-1 [9] SRIPRAPADANG C, THEWJITCHAROEN Y, BURANAPIN S, et al. Effectiveness and safety of sodium-glucose co-transporter-2 inhibitors in Thai adults with type 2 diabetes mellitus: A real-world study[J]. Curr Med Res Opin, 2020, 36(10): 1601-1610. doi: 10.1080/03007995.2020.1808454 [10] TAN B Y Q, TAN J T C, CHEAH D, et al. Long-Term trends in ischemic stroke incidence and risk factors: Perspectives from an Asian stroke registry[J]. J Stroke, 2020, 22(3): 396-399. doi: 10.5853/jos.2020.00878 [11] TU W J, QIU H C, LIU Y K, et al. Elevated levels of adiponectin associated with major adverse cardiovascular and cerebrovascular events and mortality risk in ischemic stroke[J]. Cardiovasc Diabetol, 2020, 19(1): 125. doi: 10.1186/s12933-020-01096-3 [12] PRABHAKAR S, SURAVARAPU S, MATHAI D, et al. Risk factors for stroke in rural population of telangana state of India, an unmatched case control study[J]. J Neurosci Rural Pract, 2020, 11(3): 448-453. doi: 10.1055/s-0040-1713291 [13] KONO Y, TERASAWA Y, SAKAI K, et al. Risk factors, etiology, and outcome of ischemic stroke in young adults: A Japanese multicenter prospective study[J]. J Neurol Sci, 2020, 417: 117068. doi: 10.1016/j.jns.2020.117068 [14] MAI X, LIANG X. Risk factors for stroke based on the national health and nutrition examination survey[J]. J Nutr Health Aging, 2020, 24(7): 791-795. doi: 10.1007/s12603-020-1430-4 [15] IFEJIKA N L, BHADANE M, CAI C C, et al. Characteristics of acute stroke patients readmitted to inpatient rehabilitation facilities: A cohort study[J]. PM R, 2021, 13(5): 479-487. doi: 10.1002/pmrj.12462 [16] 张爽, 刘相城, 胡姣月, 等. 脑梗死患者血清高迁移率族蛋白B1及S100β水平与认知功能关系[J]. 中华实用诊断与治疗杂志, 2019, 33(7): 675-677. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD201907015.htm [17] ELDHOLM R S, PERSSON K, BARCA M L, et al. Association between vascular comorbidity and progression of Alzheimer's disease: A two-year observational study in Norwegian memory clinics[J]. BMC Geriatr, 2018, 18(1): 120. doi: 10.1186/s12877-018-0813-4 [18] UITERWIJK R, STAALS J, HUIJTS M, et al. Framingham stroke risk profile is related to cerebral small vessel disease progression and lower cognitive performance in patients with hypertension[J]. J Clin Hypertens(Greenwich), 2018, 20(2): 240-245. doi: 10.1111/jch.13175 [19] YIN J X, YU C Y, LIU H X, et al. A model to predict unstable carotid plaques in population with high risk of stroke[J]. BMC Cardiovasc Disord, 2020, 20(1): 164. doi: 10.1186/s12872-020-01450-z -