Protective effect and mechanism of Alpiniae oxyphylla fructus on myocardial injury after exhaustive exercise in mice
-
摘要:
目的 本研究旨在建立力竭运动引起的运动性心肌损伤小鼠模型,通过观察急性力竭运动后小鼠心肌损伤指标的变化,探讨益智仁预处理对力竭运动后心肌损伤的干预作用及其可能的机制。 方法 采用简单随机分组将小鼠分为5个实验组:对照组(Con,n=6)、益智仁组(Yz,n=6)、力竭组(EE,n=6)、力竭运动模型+益智仁低剂量组(EE+EYz,n=6)以及力竭运动模型+益智仁高剂量组(EE+HYz,n=6),所有小鼠均接受为期6周的特定运动干预与药物喂养,随后处死并收集小鼠心肌损伤相关生物标志物数据。 结果 在力竭次数方面,EE+HYz组和EE+EYz组相较于EE组差异有统计学意义(P<0.05)。在体重变化方面,EE+HYz组、Con组与Yz组,以及EE+HYz组与EE组比较差异均有统计学意义(P<0.05)。EE+HYz组的TNF-α水平与EE组相比显著降低(P<0.05);5组心肌型肌红蛋白(MYO)比较差异有统计学意义(P<0.05);其他4组与EE组心肌型肌酸激酶(CK-MB)比较差异有统计学意义(P<0.001)。 结论 益智仁具有显著的抗疲劳、抗炎症及对心肌损伤的保护作用。通过抑制力竭运动引起的心肌CK-MB和MYO活性的升高,益智仁降低了心肌损伤的程度。这些发现揭露了益智仁在心脏保护方面的潜在抗氧化作用,并可能成为预防和治疗运动相关心肌损伤的一个重要机制。此外,这些结果为开发心肌损伤干预和治疗药物提供了新的研究思路。 Abstract:Objective To establish a mouse model of exercise-induced myocardial injury caused by exhaustive exercise and to investigate the intervention effect and possible mechanism of Alpiniae oxyphylla fructus pretreatment on myocardial injury after exhaustive exercise by observing the changes of myocardial injury indexes after acute exhaustive exercise in mice, thus providing a theoretical basis and reference for further related studies. Methods Mice were randomly assigned to five different experimental groups by simple random grouping: Control group (Con, n=6), Yizhiren group (Yz, n=6), Exhaustion group (EE, n=6), Exhaustion exercise model + Yizhiren low dose group (EE+EYz, n=6), and Exhaustion exercise model + Yizhiren high dose group (EE+HYz, n=6), all mice received specific exercise intervention and drug feeding for six weeks. The mice were sacrificed at the end of the experiment, and data on biomarkers associated with myocardial injury were collected. Results In terms of exhaustion frequency, EE+HYz group and EE+EYz group showed statistically significant difference compared with EE group (P < 0.05). Statistically significant differences were observed between EE+HYz group, Con and Yz group, EE+HYz and EE group (P < 0.05). In the analysis of biochemical parameters, the level of tumor necrosis factor α (TNF-α) in the EE+HYz group was significantly decreased compared with that in the EE group (P < 0.05). There was significant difference in erythroprotein (MYO) among the 5 groups (P < 0.05). Myocardial creatine kinase (CK-MB) was significantly different between the other 4 groups and EE group (P < 0.001). Conclusions Alpiniae oxyphylla fructus has significant anti-fatigue, anti-inflammation and protective effects on myocardial injury. By inhibiting the increase of myocardial CK-MB and MYO activity induced by exhaustive exercise, Alpiniae oxyphylla fructus reduced the degree of myocardial injury. These findings reveal the potential antioxidant effects of Alpiniae oxyphylla fructus in heart protection and may be an important strategy for the prevention and treatment of exercise-related myocardial injury. In addition, these results provided new research ideas for the development of intervention and treatment drugs for myocardial injury. -
表 1 各组小鼠各项指标比较(x±s)
Table 1. Comparison of various indexes in each group of mice(x±s)
组别 只数 力竭次数(次) 体重(g) TNF-α(pg/mL) MYO(pg/mL) CK-MB(pg/mL) Con 6 26.88±0.31b 0.32±0.04 0.26±0.02 0.25±0.01 Yz 6 25.05±0.73c 0.28±0.02 0.28±0.03 0.25±0.02 EE 6 18±5 25.25±1.36c 0.31±0.06 0.25±0.03 0.32±0.04bc EE+EYz 6 15±6a 24.24±1.45c 0.28±0.04 0.21±0.01abc 0.25±0.01a EE+HYz 6 13±3a 23.70±0.63abc 0.36±0.03ac 0.27±0.03d 0.25±0.01a F值 32.280 8.836 2.133 6.992 17.092 P值 <0.001 <0.001 <0.028 <0.001 <0.001 注:与Con组比较,cP<0.05;与Yz组比较,bP<0.05;与EE组比较,aP<0.05;与EE+EYz组比较,dP<0.05。 -
[1] KROPFL J M, BELTRAMI F G, GRUBER H J, et al. Circulating Gal-3 and sST2 are associated with acute exercise-induced sustained endothelial activation: possible relevance for fibrosis development?[J]. Exp Physiol, 2023, 108(10): 1259-1267. doi: 10.1113/EP091277 [2] YAN K, GAO H, LIU X, et al. Establishment and identification of an animal model of long-term exercise-induced fatigue[J]. Front Endocrinol(Lausanne), 2022, 13: 915937. DOI: 10.3389/fendo.2022.915937. [3] TRAN P, MADDOCK H, BANERJEE P. Myocardial fatigue: a mechano-energetic concept in heart failure[J]. Curr Cardiol Rep, 2022, 24(6): 711-730. doi: 10.1007/s11886-022-01689-2 [4] PAHLAVANI H A. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes[J]. Front Cell Dev Biol, 2022, 10: 950927. DOI: 10.3389/fcell.2022.950927. [5] BOUVIERE J, FORTUNATO R S, DUPUY C, et al. Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle[J]. Antioxidants(Basel), 2021, 10(4): 537. DOI: 10.3390/antiox10040537. [6] GRABOWSKA M E, CHUN B, MOYA R, et al. Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity[J]. J Mol Cell Cardiol, 2021, 155: 66-77. doi: 10.1016/j.yjmcc.2021.02.014 [7] DA SILVAVL, MOTA G A F, DE SOUZA S L B, et al. Aerobic exercise training improves calcium handling and cardiac function in rats with heart failure resulting from aortic stenosis[J]. Int J Mol Sci, 2023, 24(15): 12306. DOI: 10.3390/ijms241512306. [8] GUO Y P, PAN S S, CHEN T R, et al. Exercise preconditioning promotes myocardial GLUT4 translocation and induces autophagy to alleviate exhaustive exercise-induced myocardial injury in rats[J]. J Mol Histol, 2023, 54(5): 453-472. doi: 10.1007/s10735-023-10152-7 [9] CHOOBINEH S, BORJIAN F M, SOORI R, et al. Telocytes response to cardiac growth induced by resistance exercise training and endurance exercise training in adult male rats[J]. J Physiol Sci, 2023, 73(1): 12. DOI: 10.1186/s12576-023-00868-2. [10] 王雪绮, 林晓烨, 陆矫. 力竭运动中心肌组织凋亡与细胞自噬的作用机制研究[C]//第十二届全国体育科学大会论文摘要汇编: 专题报告(运动生理生化分会). 日照, 2022: 48-49.WANG X Q, LIN X H, LU J. Study on the mechanism of myocardial apoptosis and autophagy during exhaustive exercise[C] // Compilation of abstracts of the 12th National Sports Science Congress: Special Report (Sports Physiology and Biochemistry Branch). Sunshine, 2022: 48-49. [11] GUO Y P, PAN S S. Exercise preconditioning improves electrocardiographic signs of myocardial ischemic/hypoxic injury and malignant arrhythmias occurring after exhaustive exercise in rats[J]. Sci Rep, 2022, 12(1): 18772. DOI: 10.1038/s41598-022-23466-5. [12] 侯蕾, 王亚玲, 王文锦, 等. 益智仁化学成分研究[J]. 中草药, 2020, 51(2): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202002007.htmHOU L, WANG Y L, WANG W J, et al. Study on chemical constituents of Yizhi kernel[J]. Chinese Traditional and Herbal Drugs, 2020, 51(2): 315-320. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202002007.htm [13] 李田田. 益智仁化学成分及相关活性研究[D]. 郑州: 郑州大学, 2021.LI T T. Study on chemical constituents and related activities of Yizhi kernel[D]. Zhengzhou: Zhengzhou University. (in Chinese, 2021. [14] 王云龙, 贾英. 益智的研究进展[J]. 中医药信息, 2020, 37(5): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXN202005030.htmWANG Y L, JIA Y. Research Progress of Alpinia oxyphyllae Fructus[J]. Information on Traditional Chinese Medicine, 2020, 37(5): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXN202005030.htm [15] CHANG Y M, SHIBU M A, CHEN C S, et al. Adipose derived mesenchymal stem cells along with Alpinia oxyphylla extract alleviate mitochondria-mediated cardiac apoptosis in aging models and cardiac function in aging rats[J]. J Ethnopharmacol, 2021, 264: 113297. DOI: 10.1016/j.jep.2020.113297. [16] 李晓文, 林兰, 倪青, 等. 益智在糖尿病肾病中的应用及机制研究进展[J]. 河北中医, 2020, 42(7): 1105-1109. doi: 10.3969/j.issn.1002-2619.2020.07.031LI X W, LIN L, NI Q, et al. Research progress on the application and mechanism of Yizhi in diabetic nephropathy[J]. Hebei Journal of Traditional Chinese Medicine, 2020, 42(7): 1105-1109. doi: 10.3969/j.issn.1002-2619.2020.07.031 [17] 王宝艳, 井子杨, 任喜康, 等. 近5年益智化学成分与药理作用研究进展[J]. 广东药科大学学报, 2023, 39(4): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYX202304017.htmWANG B Y, JING Z Y, REN X K, et al. Research progress on chemical components and pharmacological action of Alpiniae oxyphyllae Fructus in the past five years[J]. Journal of Guangdong Pharmaceutical University, 2023, 39(4): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYX202304017.htm [18] 余小丹. 不同产地益智抗炎和抗氧化作用比较研究[D]. 海口: 海南医学院, 2021.YU X D. Comparative study on the anti-inflammatory and antioxidant effects of Nootropics from different regions[D]. Haikou: Hainan Medical College, 2021. [19] 周欣欣, 刘茜茜, 孔小莉, 等. 2020年版《中国药典》果实种子类中药功能及应用特点分析[J]. 中南药学, 2023, 21(6): 1605-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYX202306029.htmZHOU X X, LIU Q Q, KONG X L, et al. Function and application of fruit and seed traditional Chinese medicine in the 2020 Edition of Chinese Pharmacopoeia[J]. Central South Pharmacy, 2023, 21(6): 1605-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYX202306029.htm [20] 魏伟. 药理实验方法学[M]. 北京: 人民卫生出版社, 2010.WEI W. Pharmacological Experimental methodology[M]. Beijing: People' s Medical Publishing House, 2010. [21] 李瑞, 董毅. 实验动物运动模型的特点与应用[J]. 中国体育科技, 2023, 59(5): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202305008.htmLI R, DONG Y. Properties and Applications of Experimental Animal Exercise Models[J]. China Sport Science and Technology, 2023, 59(5): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY202305008.htm [22] 赵梦帆. 益智仁中诺卡酮在大鼠体内的药物代谢动力学研究[D]. 郑州: 郑州大学, 2022.ZHAO M F. Study on pharmacokinetics of Nokatone from Yizhiren in rats[D]. Zhengzhou: Zhengzhou University, 2022. [23] 康晶, 乔振鑫, 张之虹, 等. 葛根异黄酮对小鼠心肌损伤的保护作用及机制[J]. 中国临床药理学杂志, 2022, 38(22): 2727-2730. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202222015.htmKANG J, QIAO Z X, ZHANG Z H, et al. Protective effect and mechanism of pueraria isoflavones on myocardial injury in mice[J]. The Chinese Journal of Clinical Pharmacology, 2022, 38(22): 2727-2730. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202222015.htm [24] 叶玲玲, 常青, 边佳萍, 等. 常氏二根强心汤联合还原型谷胱甘肽对心肌梗死后心力衰竭患者心功能及心肌损伤标志物的影响[J]. 中国中医药科技, 2022, 29(6): 939-942. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYY202206002.htmYE L L, CHANG Q, BIAN J P, et al. Effects of Changshi Ergen Qiangxin Decoction(常氏二根强心汤) Combined with Reduced Glutathione on Cardiac Function and Markers of Myocardial Damage in Patients with Heart Failure after Myocardial Infarction[J]. Chinese Journal of Traditional Medical Science and Technology, 2022, 29(6): 939-942. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYY202206002.htm [25] 张海信. 模拟间歇性禁食对正常小鼠运动能力、认知表型和代谢健康影响的研究[D]. 上海: 上海体育学院, 2023.ZHANG H X. Effects of simulated intermittent fasting on exercise ability, cognitive phenotype and metabolic health in normal mice[D]. Shanghai: Shanghai Institute of Physical Education, 2023. [26] 戚世媛. 女贞子提取物对运动训练大鼠血清及某些组织相关酶活性的影响[J]. 榆林学院学报, 2023, 33(5): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YLGD202305012.htmQI S Y. Effects of Ligustrum Lucidum Extract on Serum and Some Tissue Related Enzyme Activities in Exercise Trained Rats[J]. Journal of Yulin University, 2023, 33(5): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YLGD202305012.htm [27] 陈泽宇, 王庆军. 植物发酵液型运动饮料对小鼠缓解疲劳作用研究[J]. 美食研究, 2023, 40(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YZPX202303012.htmCHEN Z Y, WANG Q J. Effect of plant-based fermented sports drink on alleviating fatigue in mice[J]. Journal of Researches on Dietetic Science and Culture, 2023, 40(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YZPX202303012.htm [28] CHUNG Y, HSIAO Y T, HUANG W C. Physiological and psychological effects of treadmill overtraining implementation[J]. Biology(Basel), 2021, 10(6): 515. DOI: 10.3390/biology10060515. [29] EVANS S, TZENG H P, VEIS D J, et al. TNF receptor-activated factor 2 mediates cardiac protection through noncanonical NF-kappaB signaling[J]. JCI Insight, 2018, 3(3): e98278. DOI: 10.1172/jci.insight.98278. [30] MAHMOUD A H, TAHA N M, ZAKHARY M, et al. PTEN gene & TNF-alpha in acute myocardial infarction[J]. Int J Cardiol Heart Vasc, 2019, 23: 100366. DOI: 10.1016/j.ijcha.2019.100366. [31] KANG X Y, JIAO T, WANG H Y, et al. Mendelian randomization study on the causal effects of tumor necrosis factor inhibition on coronary artery disease and ischemic stroke among the general population[J]. EBioMedicine, 2022, 76: 103824. DOI: 10.1016/j.ebiom.2022.103824. [32] HUANG S, FRANGOGIANNIS N G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges[J]. Br J Pharmacol, 2018, 175(9): 1377-1400. [33] CHUANG T Y, LIEN C Y, TSAI Y C, et al. Oral treatment with the Chinese herbal supplements B307 enhances muscle endurance of ICR mice after exhaustive swimming via suppressing fatigue, oxidative stress, and inflammation[J]. Food Sci Nutr, 2020, 8(7): 3682-3691. [34] YANG M, XIAO Z, CHEN Z, et al. S100A1 is involved in myocardial injury induced by exhaustive exercise[J]. Int J Sports Med, 2022, 43(5): 444-454. [35] 林紫薇, 武柳君, 吴晖晖, 等. 基于TNF/NF-κB信号通路探讨枳实薤白桂枝汤减轻心肌梗死大鼠心肌损伤的作用机制[J]. 中国实验方剂学杂志, 2023, 29(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202318002.htmLIN Z W, WU L J, WU H H, et al. Mechanism of Zhishi Xiebai Guizhitang in Alleviating Myocardial Injury in Rats with Myocardial Infarction Based on TNF/NF-κB Signaling Pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202318002.htm [36] 刘瑞, 鲁燕, 贾永平, 等. 运动诱导的心脏保护作用及相关分子机制[J]. 中华全科医学, 2023, 21(6): 1021-1025. doi: 10.16766/j.cnki.issn.1674-4152.003040LIU R, LU Y, JIA Y P, et al. Exercise induced cardioprotective effects and related molecular mechanisms[J]. Chinese Journal of General Practice, 2023, 21(6): 1021-1025. doi: 10.16766/j.cnki.issn.1674-4152.003040 [37] SIERRA A P R, LIMA G H O, DA SILVAED, et al. Angiotensin-converting enzyme related-polymorphisms on inflammation, muscle and myocardial damage after a marathon race[J]. Front Genet, 2019, 10: 984. DOI: 10.3389/fgene.2019.00984. [38] 刘然. 烟酰胺单核苷酸对急性大强度运动大鼠心肌氧化应激损伤的保护作用[D]. 天津: 天津体育学院, 2023.LIU R. Protective effect of niacinamide mononucleotide on myocardial oxidative stress injury in rats with acute intense exercise[D]. Tianjin: Tianjin Institute of Physical Education, 2023. -
下载: