留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AI在基层医疗慢性病管理中的应用研究进展

胡佳敏 邱艳 任菁菁

胡佳敏, 邱艳, 任菁菁. AI在基层医疗慢性病管理中的应用研究进展[J]. 中华全科医学, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431
引用本文: 胡佳敏, 邱艳, 任菁菁. AI在基层医疗慢性病管理中的应用研究进展[J]. 中华全科医学, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431
HU Jiamin, QIU Yan, REN Jingjing. Advances in the application of AI in chronic disease management in primary care[J]. Chinese Journal of General Practice, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431
Citation: HU Jiamin, QIU Yan, REN Jingjing. Advances in the application of AI in chronic disease management in primary care[J]. Chinese Journal of General Practice, 2024, 22(3): 481-485. doi: 10.16766/j.cnki.issn.1674-4152.003431

AI在基层医疗慢性病管理中的应用研究进展

doi: 10.16766/j.cnki.issn.1674-4152.003431
基金项目: 

国家自然科学基金面上项目 72274169

详细信息
    通讯作者:

    任菁菁,E-mail: 3204092@zju.edu.cn

  • 中图分类号: R197.324  R197.6

Advances in the application of AI in chronic disease management in primary care

  • 摘要: 在当前医疗卫生领域,人工智能(AI)技术的融入为提高慢性病管理效率和质量开辟了新途径。尤其在基层医疗体系中,AI的应用正逐步实现从理论到实践的跨越,助力全科医生更好地响应患者需求,提供个性化和高效率的医疗服务。在慢性病管理领域,AI的介入使得慢性病的综合管理变得更为智能化,提高了预防、诊断和治疗的准确性。在AI辅助下,全科医生的角色由单纯的诊疗执行者,转变为医疗资源的整合者和患者健康管理的指导者。AI能够依据患者的病情和需求,提供个性化的康复治疗方案;智能技术可用于持续监测患者的生命体征和病情变化,预警可能的健康风险;AI还能辅助患者改善生活习惯,如通过智能提醒和行为引导帮助患者坚持合理的饮食与运动;AI能构建地方性的健康教育知识库,普及慢病知识与管理技巧等。然而,信息技术的局限性可能导致数据处理能力和服务覆盖面的不足;需要严格遵守相关法律法规保障安全和隐私;此外,过度依赖AI技术可能忽视了医生与患者之间的人文关怀和直接交流。未来通过强化基层医疗人员对AI技术的理解和掌握,提高公众对AI技术的认知和接受度,从而推动AI技术在基层慢病管理中的深入应用,为提升全民健康水平作出积极贡献。

     

  • [1] 国家卫生健康委员会, 国家中医药管理局. 进一步改善护理服务行动计划(2023—2025年)[J]. 中国护理管理, 2023, 23(7): 961-963. doi: 10.3969/j.issn.1672-1756.2023.07.001
    [2] 彭婉琳, 陈德凤, 李蓓, 等. ChatGPT人工智能语言机器人在护理领域应用现状与展望[J]. 全科护理, 2023, 21(35): 4934-4937. doi: 10.12104/j.issn.1674-4748.2023.35.008
    [3] 姚泽阳, 谢稳, 邱海龙, 等. 人工智能在临床医学中的应用与展望[J]. 医学信息学杂志, 2020, 41(3): 39-43. doi: 10.3969/j.issn.1673-6036.2020.03.009
    [4] VAIDYAM A N, WISNIEWSKI H, HALAMKA J D, et al. Chatbots and conversational agents in mental health: a review of the psychiatric landscape[J]. Can J Psychiatry, 2019, 64(7): 456-464. doi: 10.1177/0706743719828977
    [5] 程洁, 张潇潭, 王哲, 等. 我国全科医生队伍建设地区差异研究[J]. 中国医院, 2023, 27(6): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYU202306017.htm
    [6] 以经济高质量发展促中国式现代化推进: 北京大学经济学院专家学者议两会论点精选(2023年)[J]. 经济研究参考, 2023(4): 26-52.
    [7] 郭怡琳, 于娜. AI医疗新趋势[N]. 华夏时报, 2023-05-22(013): 1-2.
    [8] 国家统计局. 第七次全国人口普查公告解读. (2021-05-12)[2023-01-22]. http://www.stats.gov.cn/xxgk/jd/sjjd2020/202105/t20210512_1817342.html.
    [9] 郑欣雅, 黄运有, 张奕婷, 等. 医学人工智能标准体系: 历史与现状[J]. 协和医学杂志, 2023, 14(6): 1135-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202306003.htm
    [10] SCERRI A, MORIN K H. Using chatbots like ChatGPT to support nursing practice[J]. J Clin Nurs, 2023, 32(15-16): 4211-4213. doi: 10.1111/jocn.16677
    [11] HUANG J T, YEUNG A M, KERR D, et al. Using ChatGPT to predict the future of diabetes technology[J]. J Diabetes Sci Technol, 2023, 17(3): 853-854. doi: 10.1177/19322968231161095
    [12] PENG M L, WICKERSHAM J A, ALTICE F L, et al. Formative evaluation of the acceptance of HIV prevention artificial intelligence chatbots by men who have sex with men in malaysia: focus group study[J]. JMIR Form Res, 2022, 6(10): e42055. DOI: 10.2196/42055.
    [13] 李献青, 张玲. 公共健康视域下全科医生健康管理与指导能力的培养[J]. 保健医学研究与实践, 2020, 17(4): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GXBJ202004018.htm
    [14] 陈国湘, 李俊, 韦华, 等. 基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2): 167-170. doi: 10.16766/j.cnki.issn.1674-4152.001758
    [15] RANZANI R, LAMBERCY O, METZGER J C, et al. Neurocognitive robot-assisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke[J]. J Neuroeng Rehabil, 2020, 17(1): 115. doi: 10.1186/s12984-020-00746-7
    [16] KILBRIDE C, WARLAND A, STEWART V, et al. Rehabilitation using virtual gaming for hospital and home-based training for the upper limb post stroke (RHOMBUS Ⅱ): protocol of a feasibility randomised controlled trial[J]. BMJ Open, 2022, 12(6): e058905. DOI: 10.1136/bmjopen-2021-058905.
    [17] DE LUCA R, MAGGIO M G, MARESCA G, et al. Improving cognitive function after traumatic brain injury: a clinical trial on the potential use of the semi-immersive virtual reality[J]. Behav Neurol, 2019: 9268179. DOI: 10.1155/2019/9268179.
    [18] HU X, CHEN W Z, BAI Y Y, et al. Establishment of a diagnostic model of coronary heart disease in elderly patients with diabetes mellitus based on machine learning algorithms[J]. J Geriatr Cardiol, 2022, 19(6): 445-455.
    [19] VANEGAS E, IGUAL R, PLAZA I. Sensing systems for respiration monitoring: a technical systematic review[J]. Sensors (Basel), 2020, 20(18): 5446. doi: 10.3390/s20185446
    [20] MUKHERJEE D, DHAR K, SCHWENKER F, et al. Ensemble of deep learning models for sleep apnea detection: an experimental study[J]. Sensors(Basel), 2021, 21(16): 5425.
    [21] 吕煜焱, 丁思霄, 赵逸凡, 等. 人工智能化的远程心电监测在心血管疾病中的应用[J]. 中国心血管杂志, 2020, 25(3): 270-273. doi: 10.3969/j.issn.1007-5410.2020.03.014
    [22] CHATTERJEE A, GERDES M W, MARTINEZ S G. Identification of risk factors associated with obesity and overweight: a machine learning overview[J]. Sensors (Basel), 2020, 20(9): 2734. doi: 10.3390/s20092734
    [23] KURT B, KIKRBR L B. Clinical decision support system for early diagnosis of heart attack using machine learning methods[J]. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering, 2023. DOI: 10.18038/estubtda.1025092.
    [24] FARUQUI S H A, DU Y, MEKA R, et al. Development of a deep learning model for dynamic forecasting of blood glucose level for type 2 diabetes mellitus: secondary analysis of a randomized controlled trial[J]. JMIR Mhealth Uhealth, 2019, 7(11): e14452. DOI: 10.2196/14452.
    [25] GOLDENHERSCH E, THRUL J, UNGARETTI J, et al. Virtual reality smartphone-based intervention for smoking cessation: pilot randomized controlled trial on initial clinical efficacy and adherence[J]. J Med Internet Res, 2020, 22(7): e17571. DOI: 10.2196/17571.
    [26] 何金超, 罗芳, 袁知才, 等. 协同过滤和粒子群算法在饮食推荐中的应用[J]. 计算机应用与软件, 2019, 36(8): 36-40, 59. doi: 10.3969/j.issn.1000-386x.2019.08.007
    [27] HAMAN M, ŠKOLNÍK M. Using ChatGPT to conduct a literature review[J]. Account Res, 2023: 1-3.
    [28] KOLECK T A, DREISBACH C, BOURNE P E, et al. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review[J]. J Am Med Inform Assoc, 2019, 26(4): 364-379. doi: 10.1093/jamia/ocy173
    [29] ODOM-FORREN J. The role of ChatGPT in perianesthesia nursing[J]. J Perianesth Nurs, 2023, 38(2): 176-177. doi: 10.1016/j.jopan.2023.02.006
    [30] LI J, HUANG J, ZHENG L B, et al. Application of artificial intelligence in diabetes education and management: present status and promising prospect[J]. Front Public Health, 2020, 8: 173. doi: 10.3389/fpubh.2020.00173
    [31] 唐晓波, 郑杜, 谭明亮. 慢性病健康教育知识服务系统模型构建研究[J]. 情报科学, 2019, 37(1): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-QBKX201901021.htm
    [32] 黄水晶. 基层医疗机构基本公共卫生资金管理存在的问题及对策研究[J]. 活力, 2023, 41(17): 145-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYT202317048.htm
    [33] 徐雪芬, 王红燕, 郭萍萍, 等. 人工智能在慢性病患者健康管理中的应用进展[J]. 中华护理杂志, 2023, 58(9): 1063-1067. doi: 10.3761/j.issn.0254-1769.2023.09.006
    [34] PARVIAINEN J, RANTALA J. Chatbot breakthrough in the 2020s? An ethical reflection on the trend of automated consultations in health care[J]. Med Health Care Philos, 2021, 25(1): 61-71.
    [35] BELTRAMI E J, GRANTKELS J M. Consulting ChatGPT: ethical dilemmas in language model artificial intelligence[J]. J Am Acad Dermatol, 2023: S0190-9622(23)00364-X. DOI: 10.1016/j.jaad.2023.02.052.
    [36] 赵菲菲, 卢蕾, 王靖雯, 等. 基层医疗卫生机构药学人才队伍现状与分析[J]. 贵州医药, 2023, 47(11): 1776-1778. doi: 10.3969/j.issn.1000-744X.2023.11.058
  • 加载中
计量
  • 文章访问数:  474
  • HTML全文浏览量:  89
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回